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Abstract
Children's Intuitive Theories of Group Collaboration

Emory Richardson
2023

Cumulative culture has amplified human knowledge far beyond what any individual learner 
could teach themselves or even be taught in a single lifetime: a doctor can learn to drive a car 
without having to literally reinvent the wheel. In some cases, complex artifacts can be produced 
through the accumulation of incremental improvements over time; but frequently, they’re a 
product of more or less direct collaboration. But collaboration comes with costs of its own. This 
thesis is about the cognitive capacities individuals need for collaborative learning to be worth the 
trouble. I first describe a set of interrelated obstacles to the accumulation of technical knowledge 
by individual learners capable of learning from each other, and outline some of the tradeoffs of 
relying on collaborative learning to overcome these obstacles. I then compare these tradeoffs with 
children’s and adults’ preferences for more or less direct forms of collaboration. I then focus on 
how reasoning about speed-accuracy tradeoffs in collaborative and individual learning might 
constrain those preferences. Finally, I discuss what these studies could tell us about the 
development of collaborative learning and our understanding of distributed cognitive systems. 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Chapter 1 

Introduction
This chapter contains text from the following manuscripts:

Richardson, E., Hok, H., Shaw, A., & Keil, F. C. (in prep). Herding cats: Children’s intuitive theories of 
persuasion predict slower collective decisions in larger and more diverse groups, but disregard 
factional power.

Richardson, E., Davis, I., & Keil, F. C. (in prep). Agenda setting and The Emperor’s New Clothes: People 
infer that letting powerful agents make their opinion known early can trigger information cascades 
and pluralistic ignorance.

Richardson, E., & Keil, F. C. (2022). Anger, evidence, & trending opinions: We trust consensus when we 
believe it reflects genuine persuasion. PsyArXiv. 

Richardson, E., Miro-Rivera, D., & Keil, F. C. (2022). Know your network: People infer cultural drift 
from network structure, and expect collaborating with more distant experts to improve innovation, 
but collaborating with network-neighbors to improve memory. Proceedings of the Cognitive Science 
Society, 44.

Cumulative culture has made us into obligatory social learners. In extreme cases, this is self-
evident: a single human life is simply not long enough for an isolated autodidact to teach 
themselves even a fraction of what they need to know to send a rocket to the moon — good luck 
inventing calculus from scratch, much less microchips, metalworking, mining, fuel production, 
and so on. Fortunately, firsthand understanding usually isn’t needed even when it’s possible; it 
can be outsourced to the community. Cognitive labor, like physical labor, is divided; and the 
division of labor allows communities to develop and maintain specialized knowledge that 
individuals simply wouldn’t have the time to acquire even if they had the capacity. But as 
specialization increases, collaborations have to scale up as well in order to keep pace. We not only 
need enough collaborators with the right kinds of knowledge; we need collaborators who are 
capable of using each other’s knowledge in a timely manner. And while the necessity of 
collaboration becomes increasingly apparent as cultural knowledge accumulates, the cognitive 
capacities that enable us to collaborate are less obvious.

1.1 What’s missing in the study of the cognitive capacities that 
enable collaborative learning? 
The lack of clarity is not for lack of study. In many respects, collaborative learning is just a species 
of social learning with some cooperation thrown in — and cognitive scientists have studied both 
for decades (Laland, 2004; Harris, Koenig, Corriveau, Jaswal, 2018; Rand, 2016; Whiten, 2017; 
Moll & Tomasello, 2007; Köymen & Tomasello, 2020). Even as children, we prefer to cooperate 
with people who have demonstrated prosocial behavior, adherence to in-group norms, and good 
(or at least, rational) judgment. We trust informants who are kind, competent, and have relevant 
expertise. And we use a variety of heuristics to infer whether our partners have these traits, as 
well as which traits matter most in a given setting. But, collaboration can’t be easily reduced to a 
kind of cooperative social learning (Tomasello, Melis, Tennie, Wyman, & Hermann, 2012). The 
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lack of clarity about what enables us to collaborate so successfully is due to the problem being 
genuinely tricky. Having some examples on the table will help illustrate.

• The Inherited Errors Problem. Learning from Bob lets Alice avoid the costs of learning 
alone, and lets her learn things she wouldn’t have been able to learn through firsthand 
trial-and-error; but she also risks inheriting Bob’s errors. And the errors may not even be 
his. Bob may have learned from Carol, who learned from David, and so on. In other 
words, social learning is a double-edged sword: it allows errors to cascade through long 
transmission chains as well as knowledge (Boyd & Richerson, 1995). Social learners have 
to be vigilant to avoid inheriting each other’s errors. And even as children, we are. But no 
single person has the time or ability to evaluate everything on the merits, particularly as 
cultural knowledge accumulates and specialization increases. 

• The Heuristics Problem. Heuristics about individuals’ competence, cooperativeness, 
and access to information can serve as evidence-by-proxy of their reliability as 
informants. But heuristics are a gambit: experts make mistakes, friends lack expertise, 
and eyewitnesses blink and lie — the humdrum contingencies of life can distort the 
testimony of a hundred informants in just as many ways, and the most reliable 
informants won’t necessarily be willing or able to cooperate. And no single heuristic is a 
panacea anyway; they need to be applied flexibly to work at all. For instance, if Bob is 
kind but incompetent and Carol is competent but unkind, Alice needs to decide which 
trait matters more (Danovitch & Keil, 2007). The Inherited Errors Problem adds to the 
challenge. If Alice hears from Bob after Bob hears from Carol, heuristics about their 
individual traits won’t help Alice at all unless she can use them to evaluate Carol’s 
influence on Bob’s reliability. The division of cognitive labor forces us to rely on others, 
but often leaves us with collaborators whose knowledge is second- or third-hand at best.

• The Mutual Influence Problem. If transmission errors make social learning a double-
edged sword, there’s a sense in which collaborating directly simply sharpens the blade. 
Like any kind of social learning, collaboration can improve judgment or harm it. For 
instance, Bob may point out that David has made a mistake; neither Alice nor David can 
see why, but Carol realizes Bob is right, and Alice and David defer to her expert 
explanation. But suppose David was right after all, and Carol was simply hoodwinked 
by Bob’s confidence; Alice and David may still defer to Carol’s expertise-infused 
explanation without recognizing her lapse in judgment. For that matter, even if they all 
know Bob is wrong, they might just not think he’s wrong in a way that’s worth fighting 
over — but they may or may not be right about how much it matters. These kinds of 
social dynamics can exacerbate both the Inherited Errors Problem and the Heuristics 
Problem. Collective errors can be inherited just like individual errors, but (1) collective 
errors are endorsed by multiple informants instead of just one, and (2) since allowing 
individuals to influence each other means that the reliability of their collective judgment 
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no longer supervenes on their reliabilities as individuals, heuristics about individual 
reliabilities will be misleading unless you know how the individuals have influenced 
each other (List & Pettit, 2006; Goldman, 2014; Dunn, 2019). Intuitively: if the group 
decision was driven by Bob the Blowhard, Carol’s expertise doesn’t matter — and vice 
versa. As a downstream learner, you can save time and resources by relying on collective 
judgments; but if you don’t know enough to evaluate a judgment on the merits, you 
ignore mutual influences between your informants at your peril. What cumulative 
culture highlights is that there are almost always mutual influences upstream of all us, 
whether we’re standing on the cliched shoulders of scientific giants, doomscrolling 
through viral promotions from consolidated media companies and troll factories, or 
listening to one of our collaborators convincing another to change her mind about a 
project decision.

Here’s the gist. Since no one can learn everything on their own, our learning capacity depends 
on how much we can rely on what we learn from others. But their learning capacities do too. And 
since we’re all downstream of some mutual influences between our informants, we not only need 
to consider those influences when evaluating each others’ beliefs — we need to be able to count 
on our informants to do the same. This dissertation is about some of the commonsense intuitions 
that could allow us to do that even in childhood, particularly in collaborative contexts. I focus on 
collaborative contexts because (for reasons I hope will become clear as we go) it seemed like the 
most familiar setting for the kinds of commonsense intuitions I have mind. These intuitions are 
about (1) whether mutual influence is more likely to make consensus judgments more reliable or 
less, and (2) how speed-accuracy tradeoffs affect individual and collective judgment. Equipped 
with roughly accurate intuitions about how these factors constrain the judgment of individuals 
and the communities of learners they collaborate with, learners may be able to make better use of 
that judgment without being misled by it. They may also be better equipped to collaborate in 
ways that make the benefits of collaboration worth the time and effort. 

The plan for what follows goes like this. In the remainder of Chapter 1, I give an overview of 
the theoretical background to the work as a whole. I’ll first synthesize several areas of literature 
concerning the strengths and weaknesses of collaborative learning in groups. Each section in 
Chapter 1 reviews research with both adults and children; the penultimate section summarizes 
the potential causes of developmental change and how studies of children’s metacognitive 
development can shed light on adult capacities. In Chapter 2, I contrast two kinds of social 
learning strategies (small group discussion versus crowdsourcing) that vary in the opportunity 
informants have to influence each other, for two kinds of questions (demonstrative reasoning 
versus non-reasoning) that vary in the risks and benefits of enabling that influence. In Chapters 3 
and 4, I examine commonsense reasoning about the speed-accuracy tradeoffs of individual 
(Chapter 3) and collective (Chapter 4) judgment. Chapter 3 is motivated by the observation that 
while thinking takes time, perception and memory can be accurate on much faster timescales. 
Chapter 4 is motivated by the observation that while collaborators have to cede unilateral control 
over speed-accuracy tradeoffs, they may still be able to influence how the group manages those 
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tradeoffs by reasoning about three endogenous constraints on group decision speed — the 
number of people, the number of factions, and the (im)balance of factional power. All 
experiments in these chapters are pre-registered. In Chapter 5, I begin by synthesizing the results 
of the preceding chapters and discussing potential limitations and extensions, with a particular 
focus on implications for theories of conceptual development. I then discuss how intuitive 
theories of group collaboration could shed light on our capacity for cumulative culture and the 
implications for recent debates about cognitive systems at the group level.

1.1.2 (Reasoning about) consensus: a double-edged sword
Consensus often has a strong influence on individual and group judgments — not only in 
humans (across ages, cultures, and a variety of contexts), but in other species as well (Morgan & 
Laland, 2012; Morgan, Rendell, Ehn, Hoppitt, & Laland, 2012; Haun, van Leeuwen, & Edelson, 
2013; van Leeuwen et al., 2018; Boehm, 1996). 

In some respects, this is unsurprising: formal models originating with Condorcet and Galton 
demonstrate that as long as informants’ judgments are statistically independent from each other, 
increasing the number of informants makes the strength of consensus increasingly likely to reflect 
the average competence of the crowd (Condorcet, 1994/1785; Dietrich & Spiekermann, 2013; List 
& Goodin, 2001). Roughly speaking: consensus in a competent crowd amplifies accurate 
judgments, but consensus in an incompetent crowd amplifies inaccurate judgments, simply 
because uncorrelated errors cancel each other out. For instance, even if the average informant 
only answers a yes-no question accurately 60% of the time, a large enough crowd all but 
guarantees that the judgment of the majority will be accurate. Consensus’ reliability and the 
relatively minimal cognitive capacities required to compute it would seem to make it a good 
learning strategy. And it’s made consensus a widely studied topic across the social and 
evolutionary sciences (Hastie & Kameda, 2005; Conradt & List, 2009; Centola, 2022; Kameda, 
Toyokawa, & Tindale, 2022). 

But in other respects, reliance on consensus is very surprising: Condorcet’s logic assumes 
individuals’ judgments are statistically independent. And since social learning is ubiquitous in 
the biological world, that’s a notoriously implausible assumption to make (Laan, Madirolas, de 
Polavieja, 2017; Kao & Couzin, 2014). Even shared perceptual and cognitive biases are sufficient 
to compromise statistical independence, to say nothing of shared culture, environment, or 
motivated reasoning. There’s no guarantee that these biases are truth-conducive, and widespread 
reliance on consensus-based learning strategies can create feedback loops that amplify them even 
further (Hahn, von Sydow, Merdes, 2020; Becker, Almaatouq, & Horvat, 2020; Almaatouq, 
Rahimian, Burton, & Alhajri, 2020). 

Perhaps learners (and humans in particular) are just particularly careful about avoiding 
dependencies to the extent possible? Evidence is mixed at best. Even when presented with an 
explicit choice between a consensus with a high potential for dependencies and one with low 
potential, many people explicitly defend their decision to trust the former more than the latter 
(Xie & Hayes, 2022; Yousif, Aboody, & Keil, 2019, Exp. 4). But sensitivity to “false” consensus also 
seems to differ by context. For instance, in an eyewitness memory context, adults and children as 

4



young as six trust one person reporting the testimony of four eyewitnesses more than four people 
reporting the (opposite) testimony of one eyewitness (Aboody, Yousif, Sheskin, & Keil, 2022; 
Yousif, Aboody, & Keil, 2019, Exp. 5). And even preschoolers reject a “false consensus” when 
experimenters make clear that some informants’ judgments are unjustified, such as by presenting 
a consensus that repeats the testimony of an informant who was “pretending” to have seen the 
contents of a box, or a consensus that disagrees with an artist about whether she drew a 
basketball or an orange (Kim & Spelke, 2020; Einav, 2014). In contrast, adults give equal weight to 
an economic forecast that appears in five news articles citing a single primary source and one that 
appears in a single article citing five primary sources (Yousif, Aboody, & Keil, Exp. 1-3). And 
when three informants all endorse the same answer to a trivia question, five year olds trust the 
consensus more when two informants ostentatiously copy the first’s testimony than when each 
informant answers independently — only by age 8-9 do children show the adult pattern (Einav, 
2018). Why? One reason might be that the benefits of being able to learn from others even when 
their judgments aren’t independent are worth the risks. For instance, people might expect each 
others’ judgment to be helped by direct communication more than it’s hurt, at least in some 
contexts. But is it?

1.1.3 (Reasoning about) the scope of potential benefits in group 
collaboration
The intuition is literally proverbial: two heads are better than one. The literature on problem-solving 
in groups has frequently supported folk wisdom on this point. For example, individual accuracy 
on the original Wason card selection task is typically around 10%; however, when undergrads are 
prompted to discuss the problem as a group and decide on a consensus answer, the accuracy rate 
rises to 75%, even when no group member’s initial solution is correct (Moshman & Geil, 1998). Small 
discussion groups also outperform even the best individuals on a variety of inductive reasoning 
tasks (Laughlin et al., 2006; Laughlin, 2011; Trouche, Sander, & Mercier, 2014), concept learning in 
undergraduate genetics courses (Smith et al., 2009), lie detection (Klein & Epley, 2015), jury 
decisions (Guarnaschelli et al., 2000), and numerical estimation (Navajas et al., 2018). Groups 
even punch above their weight relative to large crowds: in one study, averaging the numerical 
estimates of four discussion groups produced a more accurate answer than even 1400 individuals 
(Navajas et al., 2018). What allows groups to outperform crowds, and even their best members?

1.1.3a The benefits
A now-common view is that groups are better at processing information than individuals 

(Hinsz, Tindale, Vollrath, 1997). There are several possible reasons for this. For instance, even 
though managing a discussion is cognitively demanding, group discussion may, on the whole, 
reduce cognitive load on individual members for complex problems (Laughlin, 2011). If each 
member focuses on partially overlapping areas of same complex problem, the group as a whole 
can increase its “collective working memory” without requiring any individual member to 
consider every aspect of the problem (Kirschner, Paas, & Kirschner, 2009; Woolley, Chabris, 
Pentland, Hashmi, & Malone, 2010). Similarly, complex problems frequently require expertise 
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from diverse domains. To the extent that a society divides cognitive and physical labor, 
individuals are unlikely to all have expertise in every domain they need in order to solve a 
problem, but groups have a better chance. Another potential advantage is that group discussion 
often takes the form of collective explanation. Even explaining to oneself is an effective learning 
tool; compared to participants asked to merely describe or think aloud, children and adults asked 
to explain causal phenomena to themselves are more likely to notice inconsistent evidence, 
outright mistakes, and gaps in their own understanding (Chi, De Leeuw, Chiu, & Lavancher, 
1994; Teasley, 1995; Williams & Lombrozo, 2010). As a result, they achieve deeper levels of 
understanding and better integrate new information with prior beliefs than non-explainers 
(Walker, Lombrozo, Legare, Gopnik, 2014; Walker, Lombrozo, Williams, Rafferty, Gopnik, 2017; 
Legare & Lombrozo, 2014). Group discussion may amplify the benefits of self-explanation by 
allowing collaborators to notice each others’ inconsistencies, mistakes, and gaps as well (Chi, Roy, 
& Hausmann, 2008). Moreover, needing to resolve differing perspectives into a single solution 
may motivate collaborators to find those gaps in others’ explanations as well as clarify their own 
(Mercier & Sperber, 2011).

For instance, when Pine & Messer (1998) classified 5-7-year-old children according to their pre-
tested intuitive theories of balance, placed them in “same-theory” or “different-theories” 4-person 
groups, and gave each child beams to balance on fulcrums, children who had been asked to 
discuss with their groups improved more from pre-test to post-test than those who had not. 
Moreover, the improvement was greater for different-theories groups than same-theory groups, 
and the different-theory groups produced more than three times as many “challenges” to each 
other’s explanations. In short, even in early childhood, groups may be more reliable and efficient 
than individuals because they improve our ability to pool evidence, generate solutions, and catch 
mistakes. By adulthood, these advantages allow groups to solve a variety of complex constraint 
satisfaction problems more quickly and accurately than any individual (Laughlin, 2011; 
Almaatouq, Alsobay, Yin, & Watts, 2021).

1.1.3b The scope
But the advantages of group discussion may not apply equally to every problem learners 

encounter, or every group they form — for children or adults (Sears & Reagin, 2013; Nokes-
Malach, Richey, & Gadgil, 2015; Nokes-Malach, Meade, & Morrow, 2012; Williams, Lombrozo, & 
Rehder, 2013). For instance, Mercier & Claidière (2022) asked fair-goers to each think silently for 5 
minutes about one of three kinds of problems (ethical, trivia, and “demonstrable” deductions) 
and then discuss it in small groups for 10 minutes; they then elicited minute-by-minute changes 
in each participant’s beliefs. Responses to ethical questions (e.g., dollar value of compensation for 
losing a finger in a workplace accident or finding worms in your soup) didn’t change one way or 
the other over time. Responses to trivia questions (e.g., the total goals scored in the 2010 World 
Cup or the total number of elevators in the Empire State Building) improvements in accuracy 
only reached significance after discussion and the patterns of improvement varied between 
groups and questions. However, questions with demonstrably correct answers (e.g., the bat-and-
ball or Paul & Linda problem) made for a fairly dramatic contrast with those patterns. After 
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discussion, responses were almost unanimously correct in all groups even though fewer than 20% 
of responses were initially accurate, and thinking silently only led to much smaller improvements 
among a small subset of people. 

What makes the outcomes for “demonstrable” questions so different from ethical and trivia 
questions? Demonstrability is not an intrinsic feature of tasks themselves; it’s a matter of the 
resources that group members have available for accurately adjudicating each other’s judgments — 
in time, motivation, task-relevant information, and competence in shared conceptual systems. But 
some kinds of tasks offer more resources for adjudication than others. And that degree of 
“demonstrability” seems predict the relationship between a group’s final decision and the 
number of votes that decision initially received (Laughlin & Ellis, 1986; for review, see Bonner, 
Shannahan, Bain, Coll, & Meikle, 2021; Kerr & Tindale, 2004). 

For instance, the shared conceptual systems people use to evaluate ethical judgments and 
memory for trivia simply don’t afford “proofs” of accuracy; and since groups default to majority 
rule (Boehm, 1996; Laughlin, 2011), the answer most people initially believe is the answer the 
group will typically endorse, unless people change their minds for other reasons. But the system 
we use to adjudicate logical and physical reasoning does afford more conclusive proof — for 
groups that are sufficiently competent to evaluate each other’s use of it. Even if most people can’t 
prove that squares are half the area of the square on their diagonal, small discussion groups will 
adopt the right answer as long as a single member finds the solution at some point during the 
discussion — in short, “truth wins”, even the if a majority initially endorsed the wrong answer 
(Laughlin & Ellis, 1986; Mercier & Claidière, 2022).

Don’t mistake the point here. These shared conceptual systems don’t have to make individuals 
better at solving problems for themselves (though they might, especially if they motivate people to 
spend more time and effort). The point is that as long as they make people better at evaluating 
someone else’s judgment, they can make group judgments more accurate. But in many domains, 
the conceptual competencies that enable us to accurately adjudicate others’ judgments seem to 
include both learned skills and innate capacities. Mathematics may be “the preeminent domain of 
demonstrability” (Laughlin & Ellis, 1986), but for young children, the demonstrability of 
doubling a square may be no higher than deducing the speed of light would be for the average 
adult (Socrates’ demonstration to Meno’s slave boy notwithstanding). And since adjudicating 
disagreement through demonstrative reasoning takes more time and effort than simpler 
strategies (e.g., deferring to confidence, prestige, or consensus), collaborators may be less 
motivated to spend time and effort deliberating until they understand what can be gained from 
it. Developmental research on demonstrability may shed light on how we acquire an 
understanding of the costs and benefits of deliberation. As we’ll see in Chapter 2, these tradeoffs 
suggest that the more value people see in demonstrative reasoning, the more they’ll see the value 
of collaboration as outweighing the risks.

 Of course, there may be other reasons to prefer collaboration; for instance, discussion may 
facilitate coordination on various kinds of arbitrary norms. Though this dissertation focuses on 
high-demonstrability contexts, I’ll briefly discuss the potential nuances of extending these ideas 
to other contexts in Chapter 5. For instance, people may be less concerned that discussion will 
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“bias” decisions about arbitrary norms than whether the consequences of allowing conventions 
to emerge ad hoc would be costly enough to justify spending time to coordinate in advance (e.g., 
driving vs. walking on the same side of the road).

1.1.4 (Reasoning about) costs, risks, and challenges in group 
collaboration — and how to minimize them
Groups obviously aren’t infallible. Groupthink and conformity à la Asch and Milgram are 
familiar risks to psychologists — though often overstated: sensationalism in textbooks and 
undergraduate lectures notwithstanding, most people in Asch’s experiments did not conform 
most of the time. Across trials, 25% of participants never conformed at all, and with even a single 
“ally”, conformity fell from a high of 35% per trial to only 5%, (Asch, 1956; Griggs, 2015). Even 
among children, conformist tendencies are larger for matters of convention than moral or 
perceptual judgments, and children privately reject incorrect majorities even when they publicly 
conform (Haun & Tomasello, 2011; Pham & Buchsbaum, 2020). And strong egocentric biases 
emerge in a variety of contexts: we often give less weight to others!" judgment than we should 
(Mannes, 2009; Morgan et al., 2015), are skeptical of both expert consensus and people we suspect 
are blindly conformist, and offer more- and less-nuanced reasons for that skepticism (Light et al., 
2022; Oktar & Lombrozo, 2022). 

But even when collaborators are able to avoid the pitfalls of conformist tendencies, it may not 
always be worth the costs in time, effort, and social cohesion. Collectively, the members of a team 
may have all the skills and information they need to improve their solution to a problem through 
intensive collaboration (e.g., discussion). But they can’t use each others’ knowledge unless they’re 
aware of it. And learners need time, effort, and fairly sophisticated cognitive capacities to 
discover what their collaborators know and coordinate joint attention on the relevant aspects of a 
problem (Laughlin, 2011). The higher these (expected) costs go, the the greater the margin by 
which the (expected) payoffs of collaboration will have to exceed those of strategies with lower 
upfront costs (Almaatouq, Alsobay, Yin, & Watts, 2021), such as estimating an initial consensus 
and using it to make a decision without further ado. Consider some examples of challenges 
intrinsic to collaboration, whose costs groups have to pay upfront in order to make use of their 
collective capacities.

1.1.4a Hidden Profiles
Laboratory studies of problem-solving groups suggest that by age 9, we’re much more likely to 

discuss mutually-shared information than information known only to one member — their 
“hidden profiles” (Stasser & Titus, 2003; Gummerum, Leman, & Hollins, 2014; Ker & Tindale, 
2004). As a result, groups often underperform the sum of their members!"knowledge. In some 
respects, finding that ad hoc groups in psychology labs overlook hidden profiles seems analogous 
to demonstrating that small-talk at cocktail parties is shallow and general; obviously, (WEIRD) 
strangers will quickly seek common ground, and are unlikely to ask each other probing questions 
without special motivation. If the task doesn!t necessitate (or at least motivate) contributions from 
every teammate, individuals are more likely to free-ride, and their team may underperform the 
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sum of its members’ knowledge simply because that much of that knowledge never came to light. 
This is not to say that hidden profiles aren’t a real problem; it’s not always clear how much effort 
any given task is worth or what you need to know to solve it (Stasser & Abele, 2020). But some 
tasks make that easier to see than others. Give the cocktail party a problem with a demonstrably 
correct answer, and they’ll do better: when led to believe that a murder mystery included 
sufficient evidence to deduce the culprit, groups were twice as likely to identify the culprit, and 
brought up the #hidden profile” clues for discussion 20% more often than groups led to believe 
that the evidence was inconclusive (Stasser & Stewart, 1992). The point is that even when 
uncovering hidden profiles can improve collective judgment, collaborators need to have the skills, 
motivation, and opportunity to do so.

1.1.4b Joint attention
Collaborators can’t simply attend to a problem themselves; they have to ensure they’re all 

attending to the same problem. Joint attention can be as simple as the mutual awareness of 
looking at the same physical object, which emerges in pre-verbal infants around 9 months 
(Abney, Suanda, Smith, & Yu, 2020). But we can also attend to the same mental objects. The 
problem is that doing so is more cognitively demanding and often considerably more time-
consuming (Wohltjen & Wheatley, 2021). Consider the example of Sally, who has read that the 
moon is made of cheese:

O!Madagain & Tomasello (2019) point out that in Mother’s utterance, the discourse 
demonstrative that refers “not just a belief, but a reason for holding a belief”. In other words, 
Mother is able to convince Sally that the moon is not cheese because they share conceptual 
systems (e.g., verbal reasoning & assumptions about substance-color-form relationships) that 
allow them to jointly attend to mental objects like reasons as well as physical objects like socks. 

But reasons are complex relationships between conceptual theories, observable evidence, and 
the access reasoners have to them. Without a shared conceptual system that enables collaborators 
to keep track of each others!"beliefs and the reasons for holding (or changing) them, collaboration 
may not be much use even for experts. For instance, if one expert is reporting a nuclear 
emergency to another, these systems for sharing reasons allow him to condense the evidence, 
conclusion, and implications of a reactor core explosion into a single phrase: #there!s graphite on the 
ground”. But in explaining the situation to a bureaucrat, the expert would need to clarify that in a 
nuclear plant, graphite is only found in the core of reactor; thus, if there are chunks of graphite on 
the ground outside it, the core must have exploded with enough force to eject the graphite; thus, 
such-and-such consequences are already inevitable, and such-and-such actions are urgently 
necessary. In order to benefit from attending to each others!" reasoning, collaborators not only 
need to be competent enough in the relevant conceptual systems that they’re able to help each 

Sally: “It must be cheese! It’s yellow, and cheese is yellow!”

Mother: “That doesn’t mean it’s made of cheese — your socks 
are yellow, and they’re not cheese!”
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other understand the evidence being presented — they need to have the motivation and skill to 
do so efficiently (Bonner, Shannahan, Bain, Coll, & Meikle, 2021). 

The ability to reason from common ground appears quite early; like a nuclear technician 
explaining or merely implying the significance of graphite depending on the expertise of their 
interlocutor, even three-year-olds are more likely to justify claims to partners who don!t share 
common ground, and omit those justifications when they’re part of common ground (Köymen, 
Mammen, & Tomasello, 2016). But more broadly, sharing reasons with collaborators also means 
both providing and evaluating approximate explanations of matters we only partially understand 
to begin with (Keil, 2006). Children are much less skilled than adults in adjudicating conflicting 
explanations, and many of the skills we use to more efficiently evaluate each others!"reasoning — 
such as engaging in meta-talk comparing higher-order evidence such as our relative confidence 
or their informants!" reliability — only begin to emerge between the ages of five and seven 
(Köymen & Tomasello, 2018). The point is that our ability to co-construct explanations and 
adjudicate between them is constrained by our shared conceptual systems and the capacity for 
joint attention we use to navigate them. But these activities are cognitively and socially 
demanding even when done well; doing them poorly makes them even more costly. And doing 
them well gets harder as collaborations (and the problems they address) grow larger and more 
complex (Cooney, Mastroianni, Abi-Esber, Brooks, 2020). If Alice zones out while working alone, 
she can simply resume her task whenever she likes; and in a dyad with Bob, her lapse may be 
salient enough that he calls her out right away; but larger groups can make lapses of attention 
more likely to occur (since keeping track of each others!"reasoning is more difficult), less likely to 
stand out in the crowd, and harder to compensate for once conversation has moved on. 


1.1.4c Time management
Conversation moves quickly even when it seems to take forever to get where it’s going 

(Templeton, Chang, Reynolds, LeBeaumont, & Wheatley, 2022; Mastroianni, Gilbert, Cooney, & 
Wilson, 2021). But the decisions it leads to and the time it takes to arrive are constrained by 
factors that are only partially and imperfectly under our control. Consider some examples. Bob 
may have a chance to shape the conversation by jumping in with a quick answer before others 
have had the time to think it through; his collaborators will then have to decide whether to accept 
his proposal and move the discussion forward from there, spend more time deliberating, or 
redirect entirely. If the group realizes Alice has zoned out or misunderstood, they can decide 
whether her informed input is critical enough to repeat what’s been said. If David disagrees with 
an emerging consensus, he’ll have to decide whether it’s worth fighting over; and if he seems 
intent on filibustering, his collaborators will have to decide whether his willingness to spend the 
time and effort is more indicative of bullheadedness or an insight they’ve overlooked. Deciding 
to collaborate means that even though no one has unilateral control over either the group’s 
decision or decision speed, both are constrained by each person’s individual decisions about how 
to interact with each other. The more judiciously we pick our battles and maintain collective 
focus, the more the benefits of collaboration will outweigh the costs. 
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In Chapters 2 and 4, I review evidence suggesting that the influence individuals’ “patience” 
has on speed-accuracy tradeoffs in individual and collective judgment isn’t specific to discussion, 
or even species (Albrecht, Anderson, & Vroman, 2010; Chan, Lizzeri, Suen, & Yariv, 2018; Sumpter 
& Pratt, 2009; Sasaki, Stott, & Pratt, 2019). But to my knowledge, there’s relatively little work on 
how children reason about time management. Preschoolers do expect more difficult physical 
tasks to take longer for individual agents (Leonard, Bennett-Pierre, & Gweon, 2019); and by 
middle childhood, individual students’ performance on Raven’s Progressive Matrices is strongly 
correlated with how much they modulate the time they spend on easy versus difficult items 
(Perret & Dauvier, 2018). Moreover, reasoning about physical costs constrains our interpretations 
of each other’s actions even in early infancy (Liu, Ullman, Tenenbaum & Spelke, 2017; Jara-
Ettinger, Gweon, Schulz, & Tenenbaum, 2016). But time costs are intrinsic to every cognitive 
process as well as physical action, making them more ubiquitous than physical costs. Research on 
the developmental origins of how we reason about them could shed light on a fundamental 
constraint on human cognition.

1.2 Developmental origins and mechanisms
The experiments in this dissertation won’t be able to speak to the ontogenetic origins of our 

collaborative learning skills at either the biological or cognitive level. But the developmental 
trajectory of children’s reasoning about the tradeoffs of individual and collective deliberation 
may be able to shed light on the constraints that shape our capacity for collaborative learning even 
as adults. Aside from maturational changes in attention and memory, what might those 
constraints be? 

One constraint may be theory of mind development. The kind of first-order theory of mind 
reasoning that allows us to evaluate Bob’s beliefs about the world has traditionally been said to 
emerge between the ages of 3 and 5 (Wellman, 2001), although many of the components likely 
emerge earlier (Scott & Baillergeon, 2017). But reasoning about how Bob’s beliefs about the world 
influence Alice’s beliefs may require higher-order theory of mind, which has been said to emerge 
between the ages of 5 and 7 (Miller, 2009). The challenge of higher-order theory of mind 
reasoning help explain why Mills, Al-Jabari, & Archacki (2012) found that only 21% of 6-year-olds 
spontaneously mention bias in explaining why a judge’s decision to award first prize in a contest 
to their friend might elicit protest, or why Einav (2018) found that before age 8-9, children trusted 
consensus more when two informants ostentatiously copied a third’s testimony than when each 
informant answered independently. Detecting a mismatch between the world and Bob’s beliefs 
about it only requires a representation of one mind; estimating the influence of inherited errors 
may require representing many more minds, making phenomena like bias, groupthink, and 
hearsay more difficult for young children to evaluate — particularly for judgments that aren’t 
inherently implausible or intended to deceive (Cottrell, Torres, Harris, & Ronfard, 2023; Mills, 
2013). The assumption that our informants are exercising some degree of epistemic vigilance and 
a capacity for rational belief updating can make us particularly vulnerable to inherited errors; 
after all, the more people endorsing a claim, the harder it is to explain away the consensus as a 
failure of vigilance or rationality. Revealing informants’ evidence and their reasons and for 
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believing it can make evaluating their claims easier for young children; but real-world bias, error, 
and deception usually aren’t announced in advance. I’ll return to these points in Chapter 5.

A second constraint may be our familiarity with culturally inherited conceptual systems for 
evaluating claims. While the elements of logic may be untaught knowledge — even infants 
engage in process-of-elimination reasoning (e.g., a cup contains either A or B; but since it’s not B, 
it must be A; Cesana-Arlotti, Martín, Téglás, Vorobyova, Cetnarski, & Bonatti, 2018) — one of the 
larger themes in this dissertation is our extreme and ubiquitous dependence on specialized 
expertise. Even in pure mathematics, the elements of logic don’t buy us logical omniscience 
(Hardwig, 1991). Understanding phenomena like thermal expansion and gene expression 
requires expert assistance, and without them it may be difficult to understand why people would 
be convinced by Richard Feynman’s explanation of the Challenger explosion or biologists’ 
confidence in evolutionary theory. However, abstract intuitions about which kinds of arguments 
are most compelling — to ourselves and others — may help children learn to evaluate each 
others’ beliefs as well as their own as they incorporate culturally acquired conceptual systems 
into their beliefs (Lombrozo, 2016). This would also be congruent with recent accounts 
emphasizing that reasoning itself is often a social process, and best thought of as a set of 
constraints on our intuitive evaluations of what constitutes a “good reason”. Accounts differ on 
whether these intuitions originate in genetically endowed modules (Mercier & Sperber, 2011; 
2019) or culturally inherited cognitive gadgets (Heyes, 2019; Novaes, 2020). Evidence of early 
emerging intuitions about which kinds of problems enable more reliable demonstrations of 
accuracy may further our understanding of reasoning’s social functions. I return to these points 
in Chapter 5.

1.3 An overview of the upcoming chapters
In Chapter 2, I focus on how reasoning about the risks and benefits of mutual influence may 
prompt different social learning strategies for different kinds of problems. For instance, small 
group discussions allow individuals to pool their knowledge, process evidence collectively, and 
point out mistakes; but discussion can also exacerbate social biases and groupthink, and 
conversation itself can become unmanageable as the group grows larger. Many of these problems 
can be avoided by simply polling a crowd for individual answers; but while crowds can be 
surprisingly wise, they may also amplify the kinds of biases and mistakes that a discussion could 
have easily corrected. So when might we expect groups outperform crowds? Across three studies, 
I find that for “reasoning” questions, adults and children as young as six prefer to expect small 
group discussion to be more helpful than either asking each to answer alone or polling a crowd of 
ten times as many individuals. However, they show the opposite pattern for advice on 
challenging perceptual discrimination tasks and inferences about population preferences. 

In Chapter 3, I suggest that reasoning about the speed-accuracy tradeoffs of an agent’s 
judgment and decision-making processes can help us evaluate the reliability of their beliefs and 
make sense of their behavior. The core insight is that while thinking takes time, perception and 
memory can be accurate on much faster timescales. This means that responses that are too-fast or 
too-slow give us a lot of leverage for explaining people’s beliefs and behaviors. A moment’s 
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hesitation when asked whether the ball you’re holding is pink or red might suggest the color is 
ambiguous; the same hesitation might raise suspicion if you’re asked whether you were at the 
bank during the robbery; but it might imply that you’re only offering a rough estimate instead of 
a precise calculation when asked how much gas money an electric car saved you this year. Across 
three studies, I find precisely these kinds of inferences in adults and children as young as six. 
Moreover, children expect the amount of time agents spend thinking about a task to depend on 
the complexity of the task. 

Chapter 4 explores a conceptual link between Chapters 2 and 3. Collaboration allows us to 
solve problems we might not be able to solve alone, but it also comes with costs — we may need 
to recruit collaborators, agree on a joint goal and how to accomplish it, and maintain enough 
social cohesion in the group to do so. Since all of these things takes time and effort, the benefits of 
collaboration may not always be worth the cost. For instance, groups commonly make decisions 
by consensus. You may be sure of the best way for the group to accomplish a goal, but find that a 
strong majority favors an alternative approach. You could try to convince them otherwise, but 
would it be worth the time and effort? It would help to know how much time that would take —  
but you would need to have some way to estimate those time costs. I suggest that people may be 
able to estimate the time needed to reach consensus by reasoning about three endogenous 
constraints on group decisions — the number of people, the number of factions, and the 
(im)balance of factional power. In two experiments, I find that adults and children as young as six 
expect slower decisions from teams with more people or more factions; but only adults expect 
faster decisions from teams with stronger initial consensus. Reasoning about how factional power 
constrains group decision speed may help make us more efficient collaborators.
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Chapter 2 

Groups and crowds
This chapter is based on materials published in Richardson, E., & Keil, F. C. (2022). The potential for 

effective reasoning guides children’s preference for small group discussion over crowdsourcing. Scientific 
Reports, 12(1), 1193. https://doi.org/10.1038/s41598-021-04680-z

Abstract
Communication between social learners can make a group collectively “wiser” than any 
individual, but conformist tendencies can also distort collective judgment. We asked whether 
intuitions about when communication is likely to improve or distort collective judgment could 
allow social learners take advantage of the benefits of communication while minimizing the risks. 
In three experiments (n=360), 7- to 10-year old children and adults decided whether to refer a 
question to a small group for discussion or “crowdsource” independent judgments from 
individual advisors. For problems affording the kind of ‘demonstrative’ reasoning that allows a 
group member to reliably correct even errors made by a majority, all ages preferred to consult the 
discussion group, even compared to a crowd ten times as large — consistent with past research 
suggesting that discussion groups regularly outperform even their best members for reasoning 
problems. In contrast, we observed a consistent developmental shift towards crowdsourcing 
independent judgments when reasoning by itself was insufficient to conclusively answer a 
question. Results suggest sophisticated intuitions about the nature of social influence and 
collective intelligence may guide our social learning strategies from early in development. 
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2.1 Introduction
When is advice from multiple people more likely to clarify than confound a learner’s 
understanding? Consider two ways one could learn from multiple people at once: by eliciting a 
consensus judgment from a small group discussion, or by “crowdsourcing” many independent 
answers. Discussion may enable groups to correct mistakes and combine insights, producing an 
accurate consensus answer that no individual could have found alone. However, without an 
objective method of evaluating solutions, discussion may drag on endlessly, be misled by 
charismatic leaders or groupthink, and ultimately only create an illusion of consensus around a 
wrong answer. In contrast, crowdsourcing may still include mistakes that discussion could have 
corrected, but particularly in large crowds of independent responders, the majority, plurality, and 
average response can all be surprisingly accurate (Hastie & Kameda, 2005, Laan, Madirolas, & de 
Polavieja, 2017). Nevertheless, shared culture and cognitive biases can create illusions of 
consensus even without direct communication between individuals [Yousif, Aboody, & Keil, 
2019; Mercier & Miton, 2019). The empirical advantages of discussion and various crowdsourcing 
strategies are well-documented. Less attention has been given to laypeople’s own intuitions 
about the tradeoffs between them (note that our use of “intuition” does not refer to the intuitive-
deliberative distinction in dual systems theory; rather, it follows the frequent use of “intuitive 
theories” in developmental psychology to describe the untaught assumptions about the world 
that help learners structure their experience; for a recent review, see Gerstenberg & Tenenbaum, 
2017). Here, we investigate early developing intuitions about when group discussion or 
crowdsourcing is a more effective use of collective intelligence.

While debate over whether crowds can be trusted is at least as old as philosophy itself, 
mathematical models suggest that under certain conditions, crowds can be “wise”. Given a set of 
options to “vote” for, majority and plurality accuracy increase to near certainty as crowd size 
increases (List & Goodin, 2001; Dietrich & Spiekermann, 2013), and evolutionary simulations 
suggest that conformist learning strategies are often more adaptive than alternatives [Boyd & 
Richerson, 1988; Hastie & Kameda, 2005). Similarly, averaging crowd members’ individual 
judgments can produce a collective estimate that is more accurate than the crowd’s most accurate 
member (Galton, 1907; Hong & Page, 2004; Steyvers, Miller, Hemmer, & Lee, 2009; de Oliveira & 
Nisbett, 2018; Laan et al., 2017). Interestingly, many species faced with the problem of learning 
from multiple sources at once rely on similar heuristics to evaluate collective opinion. Even in 
early childhood, people trust majority over minority judgment, and give more weight to stronger 
majorities (Morgan, Laland, & Harris, 2015). By adulthood, people also trust pluralities, and give 
more weight to the judgments of larger crowds [Muthukrishna, Morgan, Henrich, 2016; Mannes, 
2009; Morgan, Rendell, Ehn, Hoppitt, & Laland, 2012).

However, crowdsourcing heuristics share a common weakness: for crowds to be “wise”, 
individual judgments must be independent. Social influence can compound individual error, 
particularly when a large proportion of the population are conformist learners [Raafat, Chater, & 
Frith, 2009; Lorenz, Rauhut, Schweitzer, & Helbing, 2011). Yet, while popular concerns about echo 
chambers and media bias suggest that laypeople intuitively recognize some of the risks of social 
influences, it remains unclear how well people compensate for them in practice. For example, 
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while adults and even children as young as six prefer firsthand knowledge over hearsay in an 
eyewitness memory context [Yousif et al., 2019; Aboody, Yousif, Sheskin, & Keil, 2019), adults are 
just as trusting of an economic forecast repeated by five news articles citing a single primary 
source as they are of the same forecast citing five different primary sources (Yousif et al., 2019; 
Sulik, Bahrami, & DeRoy, 2020). Similarly, while children as young as four expect randomly 
sampled evidence to cause others to revise their beliefs more than evidence from a biased 
sampling process (Magid, Yan, Siegel, Tenenbaum, & Schulz, 2018), when the source of the 
sampling bias is the selection of informants itself, children are sometimes insensitive to bias even 
late in development— particularly when the degree of consensus is high (Whalen, Griffiths, & 
Buchsbaum, 2018; Anderson & Holt, 1997; Einav, 2018; Hu, Whalen, Buchsbaum & Griffiths, 2015; 
Mills & Keil, 2005; Mills  & Grant, 2009). Indeed, even as adults, people frequently mistake the 
frequency of a belief in their local networks for its frequency in the population as a whole [Marks 
& Miller, 1987; Lerman, Yan, & Wu, 2016; Stewart eta l., 2019). In short, people’s trust and distrust 
of consensus seems to selectively disregard one of the proposed preconditions of consensus’ 
accuracy — independent sources.

One reason for people’s occasional indifference to their sources’ independence may be that 
social influence frequently makes their judgments more accurate (Becker, Brackbill, & Centola, 
2017; Becker, Porter, & Centola, 2019; Abel & Bauml, 2020; Mason & Watts, 2012; Derex & Boyd, 
2015; Barkoczi & Galesic, 2016). For instance, while open discussion may risk groupthink by 
sacrificing individuals’ independence, it also allows individuals to pool their knowledge and 
generate new insights; discussion can also ease the cognitive load on individuals, increase a 
groups’ capacity for processing information, and allow the group to correct individual mistakes 
(Kirschner, Paas, & Kirschner, 2009a; Kirschner, Paas, & Kirschner, 2009b; Laughlin, 2011). This 
division of cognitive labor means that discussion groups may be able to quickly generate 
solutions that most individuals would never produce alone, and may make discussion an 
attractive learning strategy for a wide variety of problems, particularly as the evidence load 
increases (Smith et al., 2009; Laughlin, Bonner, & Altermatt, 1998; Laughlin, Bonner, & Miner, 
2002; Almaatouq, Alsobay, Yin, & Watts, 2021). Most notably, to the extent that discussion enables 
even a single group member to correct a majority that has made a mistake, discussion may also 
have an advantage over crowdsourcing heuristics like majority rule (Moshman & Geil, 1998). 
Studies of group problem-solving have suggested that this ‘truth wins’ effect occurs when a 
shared conceptual system enables individuals to conclusively demonstrate that a given answer is 
correct or incorrect — and it is the strength of their argument, rather than the individual’s 
confidence or simply the presentation of the correct answer, which predicts whether the majority 
will be persuaded. Importantly, these studies suggest that “demonstrability” is a matter of 
degree, ranging from mathematics as the “preeminent domain of demonstrability” to purely 
judgmental tasks such as attitudes and preferences, with a variety of evidence-based reasoning 
and insight problems also being high in “demonstrability” (Trouche, Sander, & Mercier, 2014; 
Laughlin & Ellis, 1986; Larson, 2010). Note the implication of the “truth wins” effect for social 
learners: if a minority is able to demonstrate that their judgment is accurate, the majority is not 
simply influenced by the judgment of the minority, they will defer to it. Thus, when 
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demonstrations are possible, discussion groups may offer substantially more accurate collective 
judgments than a “crowdsourced” majority, with little risk of distorting an accurate majority 
judgment. Indeed, recent accounts suggest that reasoning itself may be most naturally deployed 
in service of argumentation and function most effectively in interpersonal contexts [Mercier, 2016; 
Mercier & Sperber, 2011).

Note that we are not claiming that group discussion is only beneficial for questions that afford 
demonstrative reasoning, or that demonstration and reasoning are synonymous. Rather, we focus 
on discussion and crowdsourcing as flexible, commonsense approaches to a fundamental 
problem for any social learner: integrating information from multiple sources without inheriting 
their errors. Our intent is to examine laypeople’s intuitions about their tradeoffs. Though 
crowdsourcing heuristics like majority rule can be remarkably accurate, they also presuppose 
independent judges — an unrealistic assumption about human societies. Meanwhile, work on 
group problem-solving has repeatedly found that discussion not only allows groups to 
outperform heuristics like majority rule, but that their ability to do so depends on the 
“demonstrability” of the problem (Bonner, et al., 2021). Of course, demonstration is possible 
without reasoning (e.g., by physically demonstrating how an artifact works or showing the 
location of an object), and reasoning cannot always conclusively demonstrate a that a solution is 
optimal. However, reasoning may be a reliable means of correcting errors even when physical 
demonstrations are not feasible, and when a correct answer cannot be simply deduced. For 
example, knowing the distance from New York to Chicago won’t allow a group to deduce the 
distance from New York to Cleveland, but it may enable them correct some over- and 
underestimates without needing to actually measure the distance. Indeed, in a recent comparison 
of group discussion with the wisdom of crowds on a numerical estimation task, the average 
collective estimate of four small-group discussions was more accurate than the average of 1,400 
individual estimates, and participants reported arriving at their estimates by “sharing arguments 
and reasoning together” (Navajas et al., 2018). In short, to the extent that people expect to be able 
to rely on demonstrative reasoning to minimize the risks groupthink, it may be intuitive to 
disregard the importance of independent judgment, even if they favor crowdsourcing heuristics 
in other cases.  

2.2 General method
In the present work, we asked whether people would favor different social learning strategies for 
problems that afford demonstrative reasoning than those that do not. Crowdsourcing 
independent judgments may be more valuable when the potential for reasoning is less salient, 
particularly when the crowd is large. Discussion may be more valuable when demonstrative 
reasoning provides a reliable means of analyzing problems and identifying errors, even if the 
discussion group is small. Because past work suggests that sophisticated social learning strategies 
emerge in early childhood but also that children appear to underestimate some risks of social 
influence even in late childhood (Aboody et al., 2019, Einav, 2018), we focused on adults and 
children ages 7-10. Understanding how the ability to balance the risks and benefits of social 
influence develops could shed light on the incongruence of our remarkable capacity for collective 
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problem-solving and our apparent susceptibility to groupthink. It may also provide clues as to 
where interventions to thwart misinformation may be most effective.

In each experiment (Figure 2.1), participants were shown eight questions (4 Reasoning and 4 
Non-Reasoning), and for each question, they rated whether crowdsourcing or discussion would be 
more helpful in answering, on a 4-point scale. In Experiment 1, this meant that participants rated 
whether it would be more helpful to ask five people to each answer independently, or to ask the 
same five people to give a single group answer after discussing. In Experiments 2 and 3, we 
contrasted the five-person group discussion with a crowd of 50 people answering alone. For the 
Reasoning questions, we chose a set of constraint-satisfaction problems that would challenge 
adults’ capacities, but still be understandable to children (e.g., Sudoku). Because the solutions to 
these questions must satisfy a mutually understood set of explicit constraints, discussion can help 
groups generate potential solutions and and reduce processing demands on individuals while 
relying on demonstrative reasoning to correct errors. In Experiments 1 and 2, we contrasted the 
Reasoning questions with Population Preference questions (e.g., most popular fruit in the world). 
Though individuals’ intuitions may sway as the discussion generates potential answers, 
discussion provides no objective means of adjudicating disagreement; thus, it may distort 
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Figure 2.1. Example stimuli: Groups and Crowds. Each participant saw 8 
questions. For each question, they were asked which way of answering would be 
more helpful: “five people talking together”, or “[five / fifty] people answering alone”. 
Questions were identical in Experiments 1-2 (4 Reasoning, 4 Population Preference). 
Experiment 3 contrasted Easy versions of the Reasoning questions with Hard 
Perceptual Discrimination questions. (a) Top Row: Example Reasoning question. 
Two-by-two Fruit Sudoku from Experiments 1 & 2 & partially completed “Easy” 
version in Experiment 3. (b) Bottom Row: Example Population Preference question 
(most popular fruit in the world) and Perceptual Discrimination question (which 
shape is spinning the fastest). 



intuitions rather than sharpen them. In Experiment 3, we contrasted easy versions of the same 
Reasoning questions with a set of challenging Perceptual Discrimination questions (e.g., fastest 
rotating item in an array), which a separate sample had rated as more difficult than the Reasoning 
questions. This allowed us to test the role of perceived difficulty against the potential for effective 
reasoning. If participants simply favor discussion for questions that feel more difficult — 
regardless of whether discussion can reliably adjudicate disagreement — then the preference for 
group discussion will be stronger for the Perceptual Discrimination questions than the Reasoning 
questions. Our general prediction in all three experiments was that sensitivity to the contrast 
between reasoning and intuitive judgment would lead all ages to prefer group discussion for 
reasoning questions. However, because past work has suggested that children may underestimate 
the risks of social influence until between the ages of 6 and 9 (Aboody, et al., 2019; Magid et al., 
2018; Whalen, Griffiths, & Buchsbaum, 2018; Einav, 2018), we predicted that a robust preference 
for crowdsourcing non-reasoning questions would emerge only among older children (ages 9-10) 
and adults, while younger children (ages 7-8) would favor group discussion for both kinds of 
questions in Experiments 1 and 3. All experiments were preregistered, and the data, materials, 
and power analyses are available on the OSF repository (https://osf.io/6pw5n/). All 
experiments were approved by the Yale University Institutional Review Board and conducted 
according to their guidelines. Written informed consent was obtained from all adult participants. 
Because children participated online, parents were recorded reading the informed consent form 
aloud.

2.3 Experiment 1
2.3.1 Method
Participants. We recruited 40 adults through MTurk, as well as 80 children (40 Younger, M=8.01, 
SD=.56; 40 Older, M=9.92, SD=.56; 39 girls). Children participated through an online platform for 
developmental research that allows researchers to video chat with families using pictures and 
videos on slides (Sheskin & Keil, 2018). Sample size was chosen based on the estimated effect size 
from pilot results.

Materials. We asked eight test questions (Figure 2.1), four from each of two question types: 
Reasoning and Popularity. Questions were presented from the perspective of a protagonist (Jack). 
The Reasoning questions were chosen to be simple enough to explain to children, but challenging 
enough that the answer would not be immediately obvious to adults. (1) A 4x4 Sudoku puzzle 
adapted for children. (2) A vehicle routing problem that required a MarioKart character to find 
the shortest road through all the treasures on a map without taking “two in a row that are the 
same color, or two in a row that are the same shape”. (3) A single-heap game of Nim (“Each side 
takes turns picking up pencils. Each turn, you can pick up either 1, 2, or 3 pencils. The winner is 
the person who picks up the last pencil. There are 5 pencils left in this game; how many pencils 
should Jack pick up?”). (4) An “impossible object” puzzle that requires the solver to remove a 
dowel held in place by a nut and bolt from inside a bottle without breaking the dowel or the 
bottle. The Popularity questions concerned the most common subjective preferences in a 
population. (1) Whether pizza or hot dogs were more preferred by students in Jack’s school. (2) 
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What most people in the world say their favorite fruit is. (3) What most people in the world say 
their favorite day is. (4) What most people at Jack’s school say their favorite color is. Questions 
were written to have approximately equal word counts (MReas = 73.75, MPop=67.75). Three 
counterbalances were created to vary the order of the questions — Forward, Reverse, and a 
Shuffle. Color coding of answer choice and left/right presentation were also counterbalanced 
between participants. 

Procedure. Children were introduced to the protagonist, Jack (a silhouette). They were told 
that Jack was unsure of the answers to the questions, and could ask five people for help. The five 
people could either help by Talking Together (giving Jack a single answer as a group), or by 
Answering Alone (each giving Jack their own answer after thinking about the question without 
consulting others). For each item, children and adults rated whether “talking together” or 
“answering alone” was  “probably more helpful, or definitely more helpful”, producing a 4-point 
scale of relative preference, where 1 corresponds to “definitely answering alone”, and 4 
corresponds to “definitely talking together.” Adults used the scale directly; children’s responses 
were staggered: they first chose the more helpful strategy, and then were asked for a “probably/
definitely” judgment. After answering the eight test items, participants were asked the two 
comprehension check questions (these were not counterbalanced: Comp_TT was always 
presented first). Two features of the procedure are important to keep in mind. First, participants 
could not evaluate the content of any answer to any question, because none was given: they were 
asked to choose a means of advice, not evaluate the quality of the advice itself. Secondly, they 
could not make judgments based on degree or quality of consensus — they only knew that the 
group would have to give one answer, while the crowd would have to give 5 independent 
answers which could differ or not.

2.3.2 Results
Results. For the primary test, the four responses within each question domain (Figure 2.2) were 
averaged to create a single score for each domain. A repeated measures ANOVA revealed a 
significant effect of question Type (F(1,117)=132.87, p<.001, ηp² = .532) and an AgeGroup*Type 
interaction (F(2,117)=7.83, p<.001, ηp² = .118), and a marginal but non-significant effect of 
AgeGroup (F(2,117)=2.82, p=.064, ηp² = .046). Multiple comparisons suggested that intuitions about 
how to manage collective wisdom appear by at least age 7: consistent with the empirical 
literature suggesting that group reasoning outperforms individual reasoning, all age groups 
believed that Talking Together would be more helpful than Answering Alone for Reasoning 
questions, both as compared to Popularity questions (Bonferroni corrected, Younger: t(117) = 3.66 
p=0.0057, Older: t(117)= 7.105, p<.0001, Adult: t(117) = 9.201, p<.0001), and compared to chance 
(Younger: M=3.11, SD=.52, t(39) = 7.42, p<.0001, Older: M=3.19, SD=.51, t(39) = 8.53, p<.0001, 
Adult: M=3.45, SD=.54, t(39) = 11.237, p<.0001). Moreover, both Older children and Adults 
favored Answering Alone over Talking Together for Popularity questions, though Younger children’s 
answers for Popularity did not differ significantly from chance (Younger: M=2.46, SD=.85 t(39) = 
-0.232, p=n.s., Older: M=1.94, SD=.86, t(39) = -4.076, p<.001, Adult: M=1.83, SD=.81, t(39) = -5.24, 
p<.0001). The preference for group reasoning did not differ by age (all ps >.4), though Older 
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children and Adults showed a stronger preference for crowdsourcing Popularity questions than 
Younger children (Bonferroni corrected: Adult vs. Older: t(78)=0.718, p=ns; Adult vs. Younger: 
t(78)=4.067, p<0.001; Older vs. Younger: t(78)=3.350, p<0.0143). This developmental shift towards 
Answering Alone when discussion provides no objective criteria for evaluating accuracy is slightly 
earlier than we had predicted, but consistent with past work on children’s evaluation of non-
independent testimony (Einav, 2018). 

Finally, all ages agreed that a teacher who wanted a group of five students to answer test 
questions accurately should have the students Talk Together, while a teacher who wanted to know 
which students had done their homework should have the students Answer Alone (Comp_AA: 
MYoung= 65%, p=.04, MOld= 87.5%, p<.0001,  MAdult= 92.5%, p<.0001, Comp_TT: MYoung= 70%, 
p=.008, MOld= 85%, p<.0001, MAdult= 87.5%, p<.0001). This suggests that by age 7, children 
recognize that discussion could undermine inferences about individuals’ “independent” beliefs, 
but expect group discussion to either generate or disseminate accurate answers.

Taken together, these two tasks suggest that sophisticated intuitions about the risks and 
benefits of social influence may guide decisions about how to learn from collective judgment. 
Notably, these intuitions are consistent with empirical findings documenting the a group 
advantage over individuals for reasoning questions, and the value of independent responding 
when discussion is likely to bias collective judgment.  
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Figure 2.2. Preference for group discussion or crowdsourcing in Experiment 1; each participant’s 
responses were averaged across four Reasoning questions (yellow) and four Population Preference 
questions (magenta). Higher ratings indicate stronger preference for group discussion. Grey labels 
show means; errors bars are 95% CIs; black lines show within-subject differences for the average 
rating by question Type.



2.4 Experiment 2
2.4.1 Method
Could Experiment 1 have underestimated the value of crowdsourcing? Crowdsourcing may be 
most valuable with large crowds: larger crowds are more likely to include at least one accurate 
individual, and better represent the relative frequency of beliefs in the population. Moreover, in 
large enough crowds, even a minimal plurality will easily outnumber the unanimous consensus 
of a small group. Thus, if a belief’s frequency is a cue to its accuracy, a large crowd will always be 
more informative than a small group. In Experiment 2, we contrasted the 5-person group with a 
larger 50-person crowd. We predicted that since the Popularity questions simply ask the group or 
crowd to estimate what most people in a population prefer, all age groups would find it intuitive 
to ask more people — i.e., the crowd. The benefit of large crowds is less clear for Reasoning 
questions. If few individuals can solve a problem alone, identifying the correct answer in the 
crowd may be akin to finding a needle in a haystack; indeed, if individual accuracy is known to 
be rare, the most common answer may be a widely-shared misconception (Prelec, Seung, & 
McCoy, 2017). Yet, if many individuals can solve the problem alone, large crowds are redundant 
and a learner can outsource evaluating accuracy to a group discussion. We therefore predicted 
that adults and older children would continue to favor group deliberation over crowdsourcing 
for Reasoning questions. However, we saw two plausible alternatives for younger children. First, 
younger children could show the mature pattern. Alternatively, younger children’s preference for 
reasoning in groups could be attenuated by a “more is better” bias. Additionally, since the only 
difference between Experiments 1 and 2 was the increased crowd size, our design also allows us 
to explore the effects of crowd size itself by comparing the two experiments directly.

Participants. We recruited 40 adults through mTurk, as well as 80 children (40 Younger, 
M=8.01, SD=.56; 40 Older, M=9.92, SD=.56; 39 girls). As in Experiment 1, children participated 
through an online platform for developmental research that allows researchers to video chat with 
families using pictures and videos on slides (Sheskin & Keil, 2018). One additional child was 
excluded and replaced because the family lost internet connection partway through the 
experiment and could not rejoin. 

Materials & Procedure. The materials and procedure were identical to Experiment 1, but 
participants were first shown a large crowd of people, and told that Jack could either ask 5 of 
them to Talk Together, or 50 of them to answer alone. The answer choices from Experiment 1 
were altered to display fifty cartoon icons for Answering Alone instead of five.

2.4.2 Results
Results. As before, the four responses for each question Type (Figure 2.3) were averaged to create 
a single score for each Type. A repeated measures ANOVA revealed a significant effect of Type 
(F(1,117)=376.88, p<.001, ηp² = .763) and AgeGroup (F(2,117)=9.63, p<.001 ηp² = .141), and an 
AgeGroup*Type interaction (F(2,117)=5.39, p<.01, ηp² = .084). Despite the crowd having ten times as 
many sources as the group, participants were not swayed by a “more is better” bias; all age 
groups continued to prefer the group discussion for Reasoning questions, both as compared to 
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Popularity questions (Bonferroni corrected, Younger: t(117) = 8.60  p<.0001, Older: t(117)= 11.97, 
p<.0001, Adult: t(117) = 13.06, p<.0001), and compared to chance responding (Younger: M=3.28, 
SD=.53, t(39) = 9.29, p<.0001, Older: M=3.28, SD=.42, t(39) = 11.75, p<.0001, Adult: M=3.15, 
SD=.65, t(39) = 6.37, p<.0001). Moreover, even younger children in Experiment 2 favored 
Answering Alone for Popularity questions, suggesting that they recognized that a large crowd 
would provide a better estimate of population preferences than a small group (Younger: M=2.05, 
SD=.84, t(39) = -3.38, p=.0017, Older: M=1.57, SD=.69, t(39) = -8.52, p<.0001, Adult: M=1.28, 
SD=.66, t(39) = -11.75, p<.0001).  As in Experiment 1, the preference for group reasoning did not 
differ by age (all ps > .9), though Older children and Adults again showed a stronger preference 
for crowdsourcing Popularity questions than Younger children (Bonferroni corrected, Adult vs. 
Older: t(78)=1.995, p=ns; Adult vs. Younger: t(78)=5.334, p<0.001; Older vs. Younger: t(78)= 3.339, 
p< 0.0147). We also conducted two exploratory analyses of the effect of crowd size. Our 
preregistered prediction in Experiment 2 was that participants would favor the crowd for 
population preference questions, but continue to favor the group for reasoning questions. 
However, because the only difference between Experiments 1 and 2 was the increase in crowd 
size from 5 to 50 people, our data also enables us to test the crowd-size effect directly. We ran 
separate ANOVAs for each QuestionType using AgeGroup & Experiment as predictors. The tenfold 
increase in crowd size had no impact on participants’ preference for discussing Reasoning 
questions in small groups (F(1, 234)=0.045, p=.8320); an AgeGroup*ExpNum interaction was 
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Figure 2.3. Preference for group discussion or crowdsourcing in Experiment 2; each participant’s 
responses were averaged across four Reasoning questions (yellow) and four Population Preference 
questions (magenta). Higher ratings indicate stronger preference for group discussion. Grey labels 
show means; errors bars are 95% CIs; black lines show within-subject differences for the average 
rating by question Type.



significant (F(2,234)=4.434, p=.0129), but post-hoc comparisons revealed only a marginal 
difference between younger children’s and adults’ preferences for reasoning in groups in Exp 1, 
with no other differences. However, participants were significantly more likely to crowdsource 
Popularity questions in Experiment 2 than Experiment 1 (F(1, 234)=19.303, p<0.0001), with no 
differences between age groups.

As in Experiment 1, responses to the comprehension questions at the end of the task suggested 
even the youngest children recognized that talking together would make it impossible for the 
teacher to know which students had done their homework  (Comp_AA: MYoung= 67.5%, p=.019, 
MOld= 92.5%, p<.0001,  MAdult= 90%, p<.0001). However, while older children and adults agreed 
that the students would do better on the test if they could discuss their answers, younger children 
were at chance (Comp_TT: MYoung= 52.5%, p=.4373, MOld= 90%, p<.0001, MAdult= 90%, p<.0001). 
Younger children may be less confident in the value of discussion than their responses to the 
main task questions in Experiments 1 and 2 would suggest; however, informal questioning of 
participants after the experiment suggested that younger children in Experiment 2 may have 
simply rejected talking together on a test as cheating, even though the question specified that the 
teacher could choose to allow students to talk together.

In short, Experiment 2 suggests that not only are young children’s intuitions about the value of 
group discussion consistent with empirical demonstrations of a group advantage for reasoning 
questions and the value of large crowds for intuitive estimations. Moreover, directly comparing 
Experiments 1 and 2 suggests that while children’s preference for reasoning in small groups is 
stable even in the face of a much larger crowd, they also recognize that for some questions, larger 
crowds are more helpful than smaller crowds.

2.5 Experiment 3
2.5.1 Method
Using Population Preferences as the Non-Reasoning questions in Experiments 1 and 2 leaves two 
points unclear. First, since a culture’s preferences are intuitive for most people, the Popularity 
questions may have simply seemed easier to answer than the Reasoning questions. Second, 
because individual preferences are literally constitutive of the population preference, children’s 
responses could reflect an understanding of the nature of preference polling as much as an 
understanding of the potential for groupthink. To test these two alternatives, we contrasted easy 
versions of the reasoning questions with challenging perceptual discrimination questions. 
Disagreement about a challenging perceptual discrimination task would leave a group of 
laypeople little to discuss beyond confidence, which may be sufficient to filter out obviously 
wrong answers (Masoni & Roux, 2017; Bahrami et al., 2010), but is generally an unreliable proxy 
for accuracy. In contrast, polling a large crowd has been shown to increase the accuracy of a 
collective decision for perceptual tasks (Juni & Eckstein, 2018). The relative difficulty of the Easy 
Reasoning and Hard Percept items was confirmed in a pre-test (Supplemental Materials). If 
participants’ preference for group discussion in Experiments 1 and 2 was driven by perceived 
question difficulty, then they will prefer group discussion for Hard Percept questions more than 
for Easy Reasoning questions. If group discussion was preferred because of its perceived benefits 
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for reasoning, participants will prefer group discussion more for Easy Reasoning than Hard Percept. 
If participants recognize the risks of social influence when discussants cannot rely on 
demonstrative reasoning, they will prefer crowdsourcing for Hard Percept questions. We predicted 
that adults and older children would recognize the tradeoffs, but because children under 8 
frequently fail to recognize the potential for motivational biases even in simpler cases (Mills & 
Keil, 2008), we predicted that younger children would prefer group discussion for both question 
types. As an exploratory analysis, we also compare the results in Experiment 3 directly to 
Experiment 2, but given that both the perceived difficulty and the subtype of Non-Reasoning 
question differ between Experiments, direct comparisons should be interpreted with caution.

Participants. We recruited 40 adults through mTurk, as well as 80 children (40 Younger, 
M=8.01, SD=.62; 40 Older, M=10.00, SD=.53; 37 girls). As in Experiments 1 & 2, children 
participated through our online platform (Sheskin & Keil, 2018). Two children were excluded and 
replaced when database records identified them afterwards as having already participated in 
Experiment 2. Two adults were excluded and replaced as well; though our preregistered plan was 
to accept all mTurkers who passed the basic attention screening, two worker identification codes 
appeared multiple times in the data, passing the attention screen after failing and being screened 
out two and three times, respectively, in violation of mTurk policies.

Materials & Procedure. Methods were identical to Experiment 2, with the exception of the 
following changes made to the questions themselves. First, we presented four new Non-
Reasoning questions, replacing the four Popularity questions with four Percept questions: (1) 
decide which of two pictures of a face “at the tipping point of animacy” is a photo and which is a 
photorealistic drawing (Looser & Wheatley, 2010), (2) decide whether an opaque box contains 30 
or 40 marbles by listening to a recording of it being shaken  (Siegel, Magid, Tenenbaum, & Schulz, 
2014), (3) identify which of twelve colored squares in a visual array is rotating the fastest, and (4) 
rank the 25 brightest stars in a photo of the night sky in order of brightness. Second, we 
simplified the four Reasoning questions (see Supplemental Materials) by (1) completing most of 
the Sudoku, (2) reducing the number of treasures Mario was required to pick up in the vehicle 
routing problem, and (3) replacing the “impossible object bottle” with an analog of the “floating 
peanut” task, which requires the learner to extract an object from a jar of water without touching 
the jar or object (Hanus, Mendes, Tennie, & Call, 2011). The fourth Reasoning question, Nim, 
remained the same, as adults rated the 5-item Nim heap as easy to solve.

2.5.2 Results
Results. For the primary test, the four responses within each question domain (Figure 2.4) were 
again averaged to create a single score for each Type. A repeated measures ANOVA again revealed 
a significant effect of question Type (F(1,117)=56.12, p<.0001, ηp² = .324) and AgeGroup 
(F(1,117)=7.01, p=.0012, ηp² = .108)  an AgeGroup*Type interaction (F(2,117)=4.40, p=.0143, ηp² = 
.070). The perceived difficulty of the questions had no discernible effect on participant judgments: 
participants of all ages again rejected the large crowd in favor of the small group discussion for 
the Easy Reasoning questions (Younger: M=3.08, SD=.69 t(39) = 5.35, p<.0001, Older: M=3.22, 
SD=.51, t(39) = 8.97, p<.0001, Adult: M=2.95, SD=.78, t(39) = 3.64, p=.0008). We also observed the 
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predicted developmental shift towards Answering Alone when reasoning was insufficient to 
answer the question; however, in Experiment 3 the shift occurred later than expected instead of 
earlier. While Adults favored Answering Alone and Younger children favored Talking Together for 
the Hard Percept questions as predicted, older children did not show the adult pattern, instead not 
differing from chance for Hard Percept (Younger: M=2.80, SD=.71, t(117) = 2.66 p=0.011; Older: 
M=2.44,  SD=.71, t(117) = -0.55, p=0.7535; Adult: M=2.11, SD=.69, t(117) = -3.62, p=.0008). 
Moreover, while Older children and Adults distinguished between the two question Types, 
Younger children did not (Bonferroni corrected, Younger: t(117) = -1.91 p=.8701, Older: t(117)= 
-5.318, p<.0001, Adult: t(117) = 5.74, p=.0001). As in Experiments 1 and 2, the preference for group 
reasoning did not differ by age (all ps > .9), though Younger children showed a weaker preference 
than Adults for crowdsourcing Percept questions (Bonferroni corrected, Adult vs. Older: 
t(78)=2.156, p= ns; Adult vs. Younger: t(78)=4.516, p<0.0002; Older vs. Younger: t(78)=2.360, p= ns). 
Indeed, while participants of all ages were just as confident in the small group discussion for Easy 
Reasoning questions in Experiment 3 as they were for Reasoning questions in Experiment 2, all 
ages were less confident in polling a crowd of 50 for Hard Percept questions in Experiment 3 than 
for Population Preferences in Experiment 2 (Supplemental Materials). However, since Experiment 3 
was designed contrast Easy Reasoning questions with Hard Percept questions, rather than Hard 
Percept with Population Preferences, these direct comparisons with Experiment 2 should be 
interpreted with caution: for example, the  weaker preference for crowdsourcing Hard Percept 
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Figure 2.4. Preference for group discussion or crowdsourcing in Experiment 1; each participant’s 
responses were averaged across four Easy Demonstrative Reasoning questions (yellow) and four Hard 
Perceptual Discrimination questions (red). Higher ratings indicate stronger preference for group 
discussion. Grey labels show means; errors bars are 95% CIs; black lines show within-subject 
differences for the average rating by question Type.



questions than Population Preference questions may be due the difference in Non-Reasoning 
subtype or an effect of difficulty that is specific to Non-Reasoning questions. We explore these 
possibilities further in the General Discussion. 

2.6 General Discussion
We asked children and adults to choose between two social learning strategies: soliciting a 
consensus response from a small discussion group, and “crowdsourcing” many independent 
opinions. Though discussion can sometimes lead to groupthink, by affording individuals 
opportunity to correct each others’ mistakes and combine insights while also reducing individual 
processing load, discussion can also allow small groups to outperform even their best member. In 
contrast, the value of crowdsourcing is fundamentally limited by the distribution of individual 
competence in the crowd relative to its size. The less competent individuals are on average, the 
larger the crowd needs to be to produce a reliably accurate estimate. Thus, when individual 
competence is low, crowdsourcing may be costly; when individual competence is high, the value 
added by crowdsourcing may have little advantage over discussion — for problems where 
discussion is more likely to improve accuracy than diminish it. Our results suggest that the 
decision to crowdsource or discuss may in part turn on learners’ beliefs about the efficacy of 
demonstrative reasoning for a given question.   

Analogously to young children’s failures on false belief tasks, our results suggest that the 
default expectation for group judgments may be that “truth wins”: though individuals may 
initially disagree, discussion allows groups to ultimately see the truth. As an understanding of 
how conscious and unconscious biases can influence people’s judgments develops, learners can 
preempt potential biases by crowdsourcing independent judgments. Though even the youngest 
children in our experiments expected discussion to improve accuracy on reasoning questions, the 
preference for crowdsourcing non-reasoning questions underwent a developmental shift in all 
three experiments. Indeed, in Experiment 3, the youngest children favored discussion for both 
kinds of questions, suggesting that they may have failed to recognize when discussion can 
promote groupthink. The timing of the developmental shift is consistent with past work 
suggesting that between the ages of 6 and 9, children begin to use informational dependencies 
(Aboody et al., 2019; Sulik, Bahrami, & Roy, 2020; Magid, Yan, Siegel, Tenebaum, & Schulz, 2018; 
Einav, 2018) and the potential for motivational bias in individual reports (Mills & Grant, 2009; 
Mills & Keil, 2008) to adjudicate cases of conflicting testimony. Though recent work suggests that 
even preschoolers identify cases of individual bias stemming from in-group favoritism (Liberman 
& Shaw, 2020), unconscious biases due to herding or groupthink may be less obvious, particularly 
if people assume that informants are motivated to be accurate. For example, even though 
children as young as six predict that judges are more likely to independently give the same verdict 
when objective standards are available than when they are not (e.g., a footrace vs. a poetry 
contest), at age ten children are still no more likely to diagnose in-group favoritism as an influence 
on judgments in subjective contexts than objective contexts (Mills & Keil, 2005, Liberman & Shaw, 
2020). In our experiments, both the reasoning and non-reasoning questions had objective 
answers, but only the reasoning questions afforded an objective method of finding those answers. 
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Learning to recognize this relatively subtle distinction may allow children to take advantage of 
the benefits of group discussion while avoiding the risks. This is not to suggest that people expect 
group reasoning to be infallible — merely that they expect groups to improve individual 
accuracy. This is consistent with recent work asking adults to predict group and individual 
accuracy on a classic reasoning task: while participants radically underestimated the true group 
advantage, they did expect groups to be more accurate than individuals (Mercier, et al., 2015). 
Interestingly, they also expected dyads to be less accurate than individuals. A more granular 
approach to intuitive beliefs about the dynamics of social influence may reveal more 
sophisticated intuitions: for instance, beliefs about others’ conformist tendencies and the 
distribution of individual competence may increase confidence that “truth wins” in small groups 
more than in dyads.

Past work has suggested that while people dramatically underestimate crowds and 
overestimate their own accuracy (Mercier et al., 2020; Mannes, 2009),  they defer to others more 
when uncertainty is high and crowds are larger (Asch, 1955). While increasing the crowd size 
from five to fifty had no impact on Reasoning questions in our experiments, the larger crowd did 
appear to increase crowdsourcing for Population Preference questions. However, while we only 
tested Hard Percept questions with a crowd of fifty, confidence in crowdsourcing was lower for 
Hard Percept questions than for Population Preferences (Supplemental Materials). While our design 
licenses no firm conclusions on this point, one reason seems evident: by definition, population 
preferences are whatever most individuals in a population prefer, while perceptual facts like the 
brightness of stars are wholly independent of individual judgments. Moreover, under the right 
conditions, discussing perceptual judgments with a single partner can improve accuracy (Sorkin, 
Hays, & West, 2001; Bahrami et al., 2012). Thus, participants’ reduced confidence in 
crowdsourcing Hard Percept questions may have been justified. The extent to which intuitive 
beliefs about the benefits of discussion and crowdsourcing for different question types 
correspond to the empirical benefits is an open question.

Our design is limited in one important respect: the discussion group was only allowed to give 
a single answer, while the crowd could give multiple answers. This procedure strictly ensured 
that group members could not answer independently, but also entailed a unanimous consensus 
endorsed by a minimum of five people. Unanimous consensus can be a powerful cue: even a 
single dissenter can sharply reduce conformity (Asch, 1955, Whalen, Griffiths, & Buchsbaum, 
2018). However, the meaning of dissent may vary across contexts and questions. In a crowd, a 
single “dissenter” may simply have made a mistake; but dissent-despite-discussion signals that 
the group has failed to convince them. When questions afford conclusive demonstrations of 
accuracy, failure to convince all discussants may reflect poorly on group accuracy. Conversely, in 
more ambiguous contexts, unanimity may suggest groupthink. For instance, in ancient Judea, 
crimes more likely to elicit widespread condemnation were tried by larger juries for the express 
purpose of reducing the odds of consensus, and unanimous convictions were thrown out on the 
grounds that a lack of dissent indicated a faulty process — an intuitive inference confirmed by 
modern statistical techniques (Gunn et al., 2016). A similar logic may underlie inferences about 
testimony that contradicts social alliances. For example, if Jenny says Jill is bad at soccer, even 

28



preschoolers give Jenny’s judgment more credence if Jenny and Jill are friends than if they are 
enemies (Liberman & Shaw, 2020). Our results suggest that even in early childhood, the absolute 
number of sources endorsing a belief may be less important than how those sources arrived at 
their beliefs. Indeed, the limited number of possible answers to the questions in Experiments 2 
and 3 guaranteed that even a plurality of the 50-person crowd would considerably outnumber 
the 5-person group. Yet, participants’ preference for discussion and crowdsourcing bore no 
relationship to the number of possible endorsers. Future work will compare explicit degrees of 
consensus in groups and crowds.

The last decade has produced an extensive literature describing how individual social learning 
heuristics and patterns of communication in social networks can improve or diminish collective 
learning (Derex & Boyd, 2016; Derex, Perreaut, & Boyd, 2018; Almaatouq, et al., 2020; Becker, 
Brackbill, & Centola, 2017). By focusing on population-level outcomes, much of this work has 
tacitly treated individuals as passive prisoners of social influence. However, the heuristics 
guiding social learning develop in early childhood, and recent work has shown that like other 
intelligent systems capable of self-organization, people are capable of “rewiring” their social 
networks to improve both individual and collective learning, by “following” or “unfollowing” 
connections depending on their accuracy (Almaatouq, 2020). Our experiments focused on two 
features of communication patterns that individuals can and do control in the real world, beyond 
who they choose to trust: how many people to talk to, and whether to talk with those people as a 
group or a crowd. Our results suggest that even in early childhood, people’s judgments about 
how to best make use of group discussion and crowdsourcing heuristics may be consistent with 
the empirical advantages of each strategy. An understanding of how intuitions about social 
influence develop may contribute to a clearer empirical picture of how people balance the 
benefits of learning from collective opinion with the risks of being misled by it. 
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Chapter 3 

Speed-accuracy tradeoffs in social 
cognitive inferences about individuals

This chapter is based on materials published in Richardson, E., & Keil, F. C. (2022). Thinking takes time: 
Children use agents’ response times to infer the source, quality, and complexity of their knowledge. 
Cognition, 224, 105073. https://doi.org/10.1016/j.cognition.2022.105073

Abstract
Limits on mental speed entail speed-accuracy tradeoffs for problem-solving, but memory and 
perception are accurate on much faster timescales. While response times drive inference across 
the behavioral sciences, they may also help laypeople interpret each others’ everyday behavior. 
We examined children’s (ages 5 to 10) use of agents’ response time to infer the source and quality 
of their knowledge. In each trial, children saw a pathfinding puzzle presented to an agent, who 
claimed to have solved it after either 3s or 20s. In Experiment 1 (n=135), children used agents’ 
response speed to distinguish between memory, perception, and novel inference. In Experiment 2 
(n=135), children predicted that fast responses would be inaccurate, but were less skeptical of 
slow agents. In Experiment 3 (n=128), children inferred task complexity from agents’ speed. Our 
findings suggest that the simple intuition that thinking takes time may scaffold everyday social 
cognition.
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3.1 Introduction
A colleague once posed a trick question to the polymath John von Neumann. von Neumann was 
famous for his quick mental calculations, but the solution to this particular problem could either 
be found by brute-force calculation, or by a rarely noticed shortcut. The question was “Two 
cyclists twenty miles apart are moving towards each other at 10 mph; a fly caught between them is moving 
at 15 mph, from wheel to wheel and back again, until it is crushed between the wheels of the bikes. How far 
will the fly travel?”. The brute force approach is to sum the geometric series, adding up all of the 
fly’s increasingly short trips between the wheels; alternatively, one could notice that the cyclists 
will meet in exactly one hour, when the fly will have travelled exactly fifteen miles. von 
Neumann answered immediately, and the colleague disappointedly replied “oh, you’ve heard about 
the trick”. von Neumann retorted “what trick? I simply summed the geometric series!”. 

The logic of this exchange is intuitively obvious, which is remarkable given that it relies on 
fairly intricate series of counterfactuals and violations of expectation. Even a von Neumann could 
not sum an infinite series so quickly; but while both guessing and memory can be nearly 
instantaneous, correctly guessing an infinite sum is extremely improbable — so improbable that 
we jump to the conclusion that von Neumann must have simply recalled the trick. Discovering 
that von Neumann had summed the infinite series reveals a prodigious mental speed — and by 
extension, extraordinary competence with numbers. This interpretation is effortless because we 
intuitively understand the relative speed-accuracy tradeoffs of different cognitive processes and 
the significance of violating those tradeoffs. 

Yet, despite the widespread use of response time as an inductive tool in the behavioral 
sciences, attention to laypeople’s own inferences about each others’ response times has been 
sporadic and unsystematic. Nevertheless, the few existing studies suggest that timing is a rich 
and flexible cue. For example, adults who respond more quickly to trivia questions are also rated 
as more charismatic by peers (von Hippel et al., 2016).  Conversely, adults interpret longer 
latencies as reluctance in response to requests (Roberts, Francis, & Morgan, 2006), as memory failure 
in response to trivia questions (Brennan & Williams, 1995), and as indecision between equally 
desirable options in decision-making (Frydman & Krajbich, 2016, Gates et al., 2021). Moreover, in 
negotiation contexts, buyers’ hesitation (or lack thereof) can reveal their price-point, allowing 
experienced sellers to adjust their selling strategy in response  (Konovalov & Krajbich, 2017). 
Inferences like these often feel effortless despite their sophistication; yet, we are also notoriously 
bad at estimating the time required to complete a given task. Where do timing-based inferences 
come from, and how systematic are they? We suggest that even the most sophisticated inferences 
build on a simple intuition already present in early childhood: thinking takes time. On this account, 
seeing an agent spend more or less time on a task than expected demands explanation. Reasoning 
about the time costs agents incur to achieve their goals may enable the same kinds of 
sophisticated inferences about beliefs and desires that we make by reasoning about the costs 
agents incur while pursuing goals in spatial environments (Baker, Jara-Ettinger, Saxe, & 
Tenenbaum, 2017). Indeed, timing may be such a flexible cue because faster or slower responses 
simply index more or less thought; the question of what the agent was thinking about must be 
determined by context. Our proposal suggests a developmental approach; while young children 
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may expect thinking about unfamiliar problems to take more time than remembering the answer 
or seeing it directly, explaining why an agent took more or less time than expected in a specific 
context may be more difficult. We return to this point in the general discussion.

Timing-based inferences have at least three parts: (1) an observer’s representation of an agent’s 
actual response time, (2) the observer’s expectations about how long a task will take to complete, 
and (3) a plausible explanation for any difference between the two times. While children’s time 
perception is less precise than adults’, the ability to represent and compare durations develops 
early: even three-year-olds judge a 3s interval between two stimuli as more similar to a 4s interval 
than to a 1s interval (Droit-Volet & Wearden, 2001; see Wearden, 2016, for review).

Children can also identify plausible explanations for differences in response times between two 
agents, such as competence or task difficulty. However, conflicting heuristics based on effort, 
speed, and outcomes often confound younger children’s competence judgments until late 
childhood unless task difficulty is transparent (Nicholls, 1978; Leonard, Bennett-Pierre, & Gweon, 
2019). For example, when experimenters explicitly described agents in a story as (A) finishing a 
puzzle quickly or slowly, (B) thinking it easy or difficult, and (C) trying hard or not, preschoolers 
integrated difficulty, effort, and speed (Heyman & Compton, 2006). Of course, speed, effort, and 
task difficulty may rarely be explicitly described in the real world. Still, more recent work 
suggests children can also integrate these cues spontaneously under certain conditions: when 
presented with videos that varied agents’ speed in building block towers and the relative 
difficulty of their task, preschoolers recognized the tradeoffs — but only when physical cues to 
difficulty were unambiguous (Leonard, Bennett-Pierre, & Gweon, 2019). However, cognitively 
challenging tasks frequently require no physical effort at all. Nevertheless, the difficulty of 
cognitive processes themselves may be detectable for toddlers, even when the objective difficulty 
of the task is less certain. 

Consider the case of speech disfluencies like uh and um: disfluencies occur more frequently 
under high cognitive load, such as might be imposed by recalling a rare word or weak memory, 
or by planning a complex utterance (Clark & Fox Tree, 2002; Kidd, White, & Aslin, 2011b).  By 30 
months, children appear to interpret speakers’ speech disfluencies as resulting from processing 
difficulties: they predictively look at hard-to-describe or unfamiliar objects at the onset of the 
filled pause (Arnold, Hudson Kam, & Tanenhaus, 2007; Kidd, White, & Aslin, 2011a; Orena & 
White, 2015). Children’s inference may reflect implicit causal reasoning: hard-to-describe objects 
cause processing difficulties, which in turn cause disfluencies; hence, a disfluency signals that the 
speaker is preparing to refer to an unfamiliar or hard-to-describe object. When given an 
alternative cause for a speaker’s disfluency, participants’ inference is blocked. For example, if a 
speaker frequently forgets the names of common objects, a speech disfluency may not imply that 
they are trying to recall a rare word in particular: chronically forgetful speakers may just as 
disfluent in producing rare words as common words. On this account, the listener’s reasoning 
begins not from beliefs about task difficulty per se, but from recognizing the signs of effortful 
cognitive processing. These cues then trigger a post-hoc search for an explanation of those 
difficulties. 
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To the extent that response time signals effortful cognitive processing, it could license a variety 
of inferences about everyday behaviors. However, psychological processes themselves vary in the 
time and effort involved. For example, perceptual processes tend to be fast and automatic. Seeing 
someone take several seconds to respond to a question like “is this ball red or pink?” may tell us 
that the color they’re looking at is an ambiguous case, even if we can’t see it ourselves; if it turns 
out to be fire-engine red, we might wonder whether the person is colorblind. Memory retrieval 
may be slower than perception, but someone who takes tens of seconds to respond when asked 
their spouse’s birthday might still elicit doubt or consternation, even before they produce an 
answer. In contrast, longer pauses are to be expected for questions that require explicit thought 
about complex relations: thinking takes time, on a scale that memory and perception only require 
under unusual circumstances. In short, violating the expected timescale may be conspicuous: 
why did the person need to think about what color they were seeing? Why didn't the person need 
to think about the answer to a complex calculation? Our success as individuals and as a species 
depends on our ability to quickly and accurately assess the knowledge, intentions, and 
competence of other agents; a response that is “too quick” may suggest very different inferences 
than a response that is “too slow”.

3.2 General Method
Here, we examined the development of explicit timing-based inferences in childhood. We initially 
focus on children ages 5-10 because younger children may struggle to evaluate time and difficulty 
simultaneously for cognitive tasks (e.g., Leonard et al., 2019; Nicholls, 1978). In each experiment, 
participants were introduced to a pathfinding puzzle (Figure 3.1). After learning the rules, 
participants watched other agents play the game one by one. After either ~3 seconds or ~20 
seconds, the agent signaled that he thought he knew the solution. Participants were then asked to 
make a judgment. In Experiment 1, participants saw a complex puzzle presented to the agent, 
and judged whether the agent was “figuring out the answer for the first time”, or “remembering 
the answer from yesterday”. We predicted that participants would categorize fast responses as 
memory, and slower responses as reasoning. Experiment 2 was identical, but participants judged 
whether the agent had “actually figured out” the answer or “made a mistake”. We predicted that 
even the youngest children would expect fast responders to make mistakes, and to be more likely 
to make mistakes than slow responders. In Experiment 3, participants saw the agent draw a card 
with one of two puzzles (simple or complex), but the participants themselves could not see 
which; they were asked to guess which puzzle the agent was looking at, and then guess whether 
the agent’s solution was accurate. We predicted that children would integrate response time and 
puzzle difficulty to infer which map the agent was looking at and whether their solution was 
accurate. Importantly, the puzzle difficulty and the agents’ response time were never explicitly 
mentioned in any of the experiments; inferences based on time or difficulty were made 
spontaneously. All children participated through an online platform for developmental research 
(Sheskin & Keil, 2018). Participants came from 39 US states, were 51.7% female, 65% white, and 
had a median household income of $77,083, as estimated by US Census data for their reported 
postal code (US household median: $68,703). The pre-registrations, power analyses, data, and 
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materials for each experiment are available on the first author’s OSF repository. Though our 
preregistered analysis plan uses standard linear regressions and ANOVAs, we also provide 
analogous analyses using ordinal regressions, following recent recommendations against using 
standard regressions for ordinal data (Liddell & Kruschke, 2018), which were brought to attention 
during the review process. Because both analyses produce nearly identical results in each 
experiment but ordinal regressions are still atypical in the field, we present our preregistered 
analyses in the main text and provide the ordinal regressions as a point of comparison in the 
supplementary materials.

3.3 Experiment 1
3.3.1 Method
Participants. We recruited 45 adults through MTurk, as well as 90 children in two age groups (45 
age 5-7, M=6.5, SD=.94; 45 age 8-10, M=9.45, SD=.90; 53% girls). An additional 8 children (3 age 5, 
4 age 6, and 1 age 7) and 5 adults were excluded before data collection for answering training 
questions incorrectly; these were replaced with new participants.

Materials. We created six grid maps with simple geometric shapes of different colors scattered 
across them. Each map had 8 or 9 shapes of 3 or 4 different colors. A flag in the bottom left corner 
of the grid marked the finish line, and a MarioKart character at the top right marked the starting 
line. During the test phase, participants saw the maps appear in front of a cartoon silhouette 
facing a computer screen. Children answered by using color-coded cartoon figures on the left and 
right of the screen (Figure 3.1); presentation of these answer choices was counterbalanced 
(Color_CB). Adults answered using a scale slider. The order of the six maps was reversed for half 
the participants (MapOrder_CB). Finally, four counterbalances were created to vary the order of 
the agents’ response times (TimeOrder_CB). 
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Fig 3.1. Training Procedure: Children had three chances to answer 3 of 3 training questions correctly 
(one example displayed): (1) “Which road is shorter, red or green? Yes, red, great job!”, (2) “Which 
road breaks the rule? Yes, green! Great job! And why does it break the rule?”, (3) “Let’s say Mario 
drives on the red road instead. So first, he picks up the pink circle, and then he picks up the purple 
star. Which treasure should Mario pick up next, so that he’s not breaking any rules? Example Trials: 
After a Hard map appeared on the screen (Exps 1 & 2) or the agent drew a card with either an Easy or 
Hard map (Exp 3), the agent signaled that they had found the shortest road that followed the rules, 
after either 3s or 20s. 

https://osf.io/z6ykt/?view_only=3671595f8ebd47c28152a569782db99d


Procedure. Training Phase: Participants were told that they would play a racing game with 
Mario, and learned the object of the game and the rules. The experimenter described the task to 
the children over a video-chat; the same materials were presented to adults as a prerecorded 
voiceover slideshow. The experimenter told the participant that Mario wanted to collect all of the 
treasures on a map, and take the shortest road through the map that followed a rule. The rule was 
that Mario could “not pick up two treasures in a row that are the same color, or two in a row that are the 
same shape. But he has to pick up all of the treasures”. Participants were then required to answer four 
comprehension questions correctly (see Figure 3.1 caption). These were as follows. (1) Which of 
two example roads is shorter, (2) Which of two example roads breaks a rule, (3) Why does that 
road break a rule, (4) Identify an item to pick up next in an example sequence. Participants who 
answered each question correctly the first time proceeded to the test phase. Children’s incorrect 
responses were gently corrected after each question, and they proceeded to the test phase only if 
they were able to answer all the comprehension questions correctly in two additional training 
rounds. Adults incorrect responses were not corrected, and adults proceeded to the test phase 
only if they correctly answered all the comprehension questions in the next round. After learning 
how to play the game, participants were told that they would watch other people playing the 
game, and that their job was to decide whether each person was (A) remembering the shortest 
road through the map from playing it the day before, or (B) figuring out the shortest road for the 
first time. At this point, mTurk participants also answered an attention check question in order to 
screen out participants who were skimming instructions. 

First Task: Memory vs. Inference. For each test item (Figure 3.1), the experimenter presented a 
new silhouette sitting in front of a blank screen, saying “Here’s the next person. We’ll show him the 
map, and when he thinks he knows the shortest road that follows the rules, he’ll start his engine”, at which 
point the map appeared on the screen. After ~3s or ~20s, an engine sound played, and the 
experimenter said “now he’s started his engine, so he thinks he knows the shortest route through the 
map”, and participants decided whether the agent had been “remembering the answer from 
yesterday” or “figuring it out for the first time”. Children first chose one of two alternatives 
(remembering or figuring out) and then were asked whether the agent was “probably” or “definitely” 
[remembering / figuring it out]; adults used a 4-point scale directly. Three maps were presented 
for ~3 seconds before the engine started, and three for ~20 seconds. 

Second Task: Perception vs. Inference. Like memory, perceptual processes are nearly 
instantaneous, making direct perceptual access another potential explanation for fast responses. 
In a second task, the experimenter introduced two new cartoon agents, one of which was wearing 
opaque goggles. The experimenter specified that neither had played the game before (and so 
could not be remembering the maps), but that the silhouette with goggles “likes to cheat”; a 
computer in his goggles would show him the shortest road when he looked at the map, and so he 
would not have to figure out the answer himself. The other silhouette was described as playing 
fair. The experimenter presented a map to the two characters, and an engine sounded after ~3s. 
Participants were then asked who had started his engine: the one who “cheated with his special 
glasses and saw the answer”, or the one who “played fair”. We expected participants to infer that 
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only a cheater would have responded so quickly to a complex puzzle, but did not preregister the 
hypothesis for the second task.

3.3.2 Results
 The three responses at each response speed were averaged to create a single score for each 
(Figure 3.2a). A repeated measures ANOVA revealed a significant effect of Speed (F(1,132)=202.09, 
p<.0001, $² = .605) and an AgeGroup*Speed interaction (F(2,132)=17.51, p<.0001, $² = .210), but no 
effect of AgeGroup (F(2,132)=0.425, p=.65, $² = .006). As predicted, all age groups categorized the 
fast response as memory (MYoung=2.13, t(44) = -3.23, p=.002, MOld=1.80, t(44) = -7.33, p<.0001, 
MAdult=1.47, t(44) = -13.00, p<.0001), and categorized the slow response as inference (MYoung=2.75, 
t(44) = 2.63, p=.012, MOld=3.21, t(44) = 7.23, p<.0001, MAdult=3.45, t(44) = 10.58, p<.0001). All age 
groups also identified the fast responder as having cheated (Figure 3.2b), including 80% of 6 year 
olds and 86.7% of 7 year olds, suggesting that even the youngest children recognized that three 
seconds is an impossibly fast latency to solve the puzzle for the first time, but is easily explained 
by having direct perceptual access (MYoung=71.1%, binomial p=.003, MOld=84.4%, binomial 
p<.0001, binomial MAdult=91.1%, p<.0001). 

Next, we explored whether children would rate the fast response as memory at younger ages 
than they rated slow responses as inference, but our prediction here was not supported. For each 
subject’s average rating for fast and slow responses, we calculated the deviation from chance 
responding. We then regressed these values on age in years, using contrast coding to compare 
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Figure 3.2a-b. (a) Results from Task 1 (Memory vs. Inference). Violin plots and means with 95% CIs 
for Fast and Slow trials in Experiment 1. Each dot is the average of each participant’s 3 fast trials 
(Green) or 3 slow trials (Blue). Participants rated each agent on a 4-point scale. (a) Results from Task 
2 (Perception vs. Inference). Bar plots with means and 95% CIs from the “cheater” task. 



each level to chance. The 7, 9, and 10 year olds were more likely to rate the fast responses as 
memory (%7 = .66, p<.001,  %9 = .88, p<.001, %10 = .95, p<.001), but the 5, 6, and 8 year olds did not 
differ from chance (%5 = .21, p=.226,  %6 = .23, p=.180, %8 = .28, p=.111). The 7, 8, 9, and 10 year olds 
were more likely to rate the slow responses as inference (%7 = .54, p<.001,   %8 = .37, p=.020, %9 = .70, 
p<.001, %10 = 1.06, p<.001), but the 5 and 6 year olds did not differ from chance (%5 = -0.08, p=.618,  
%6 = .28, p=.075). 

These results evince an early-developing commonsense intuition that “thinking takes time”, 
while perception and memory — even memory for a solution to a complex problem — are 
expected to be much faster. In Experiments 2 and 3, we ask whether children can use this 
intuition to predict the accuracy of an agents’ response, and whether they modulate their 
judgments according to the difficulty of the problem.

3.4 Experiment 2
3.4.1 Method
Participants. We recruited 45 adults through mTurk, as well as 90 children in two age groups (45 
age 5-7, M=6.79, SD=.82; 45 age 8-10, M=9.84, SD=.82; 51% girls). An additional twelve children 
and one adult were screened out and replaced before data collection for failing the training (6), 
losing internet connection (2), fussing out (2), parent interference (2), and colorblindness (1). 

Procedure. First Task: Speed-Accuracy Tradeoffs. We made one change to our materials from 
Experiment 1. Agents were now described as playing the game for the first time, and participants 
were asked to guess whether each agent had “actually figured out the shortest road, or if they 
made a mistake”, again using a 4-point confidence scale. Second Task: Speed & Competence. To 
compare our results to past work on children’s timing-based inference, one trial at the end of the 
experiment asked participants to judge the relative competence of two agents who each 
accurately solved the same puzzle after either 3s or 20s. Because this task was included simply to 
compare our results with past work, the full method and results are described in the 
Supplemental Materials. In brief, younger children and adults were equally likely to judge the 
fast and slow agent as “better at this game”, but older children believed the fast agent was better. 

3.4.2 Results
 Results are shown in Figure 3.3. The three responses at each response speed were averaged to 
create a single score for each. A repeated measures ANOVA revealed a significant effect of Speed 
(F(1,111)=72.16, p<.0001, $² = .394) and an AgeGroup*Speed interaction (F(2,111)=10.69, p<.0001, 
$² = .162), but no effect of AgeGroup (F(2,111)=1.50, p=.23, $² = .026). There were two unexpected 
order of presentation effects, both suggesting that the predicted effect was larger for one 
counterbalance than the others; however these effects were smaller than the main effect of Speed, 
and subsequent analyses suggested that they could not explain the focal findings 
(TimeOrder_CB: F(3,111)=5.27, p=.002, $² = .125; MapOrder_CB*Speed: F(1,111)=3.97, p=.049, $² = 
.034). Post hoc comparisons of the Age*Speed interaction revealed that while the adults and older 
children distinguished between 3s and 20s responses as predicted, the difference for younger 
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children was not significant (Young: MFast=2.24, MSlow=2.49 t(111) = -2.18, p=.473; Older: 
MFast=2.19, MSlow=2.66, t(111)=-4.02, p=.0016; Adult: MFast=1.77, MSlow=2.76, t(111) = -8.49, p<.0001, 
bonferroni corrected). However, all age groups predicted that fast responses were likely to be 
wrong (MYoung=2.24, t(44)=-3.04, p=.004, MOld=2.19, t(44) = -3.55, p<.001, MAdult=1.77, t(44) = -9.47, 
p<.0001). While adults and older rated the slow responses as likely to be right, younger children 
did not differ from chance (MYoung=2.49, t(44)=-0.12, p=.907, MOld=2.66, t(44)=2.16, p=.036, 
MAdult=2.76, t(44) = 3.00, p=.004). Children may have been right to be skeptical of accuracy on the 
slow trials: given the computational complexity of these problems, even 20s is too fast to solve 
them except by luck. Indeed, given past work suggesting that even older children can be 
unreasonably credulous towards confident speakers (Kominsky, Langthorne, & Keil, 2015), even 
a skepticism on the fast trials that emerges around age 6 or 7 may be precocious.  However, since 
the difference between the fast and slow trials was not significant in the younger age group, 
interpretations of the youngest children’s responses as reflecting skepticism of the agents’ 
accuracy should be taken with a grain of salt. In Experiment 3, we examine the possibility of an 
early-but-nuanced skepticism more closely, asking whether children’s judgments integrate both 
response time and task difficulty.

3.5 Experiment 3
3.5.1 Method
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Figure 3.3. Violin plots and means with 95% CIs for Fast and Slow trials in Experiment 2. Each dot is 
the average of each participant’s 3 fast trials (Green) or 3 slow trials (Blue).



If observers infer that “more time = more effort”, then they may infer that agents who spend more 
time are solving more complex problems than agents who spend less time. We predicted that 
children would infer that (A) fast agents were more likely to be looking at easy maps than hard 
maps, (B) fast agents were more likely than the slow agents to be looking the easy maps, and (C) 
fast agents’ solutions were correct for the easy maps but incorrect for the hard maps. Because 
Experiments 1 and 2 suggested that timing-based inferences appear to emerge around age 6 or 7, 
we focused on ages 6-8 in Experiment 3.

Participants. We recruited 32 adults through mTurk, as well as 96 children (32 age 6, M=6.46, 
SD=.31; 32 age 7 M=7.55, SD=.31; 32 age 8, M=8.59, SD=.30; 48 girls). An additional 13 children 
were screened out and replaced before data collection for failing the training (7), technical 
difficulties preventing videos from playing (5), and fussing out (1).

Materials. We generated a set of Easy puzzles by rearranging the treasures on the complex 
puzzles from Experiments 1 and 2 into a row of alternating colors and shapes, so that the shortest 
route passed directly through them. This produced pairs of maps which were identical in the 
number and kind of treasures, but were Easy or Hard to solve. In each trial, participants saw an 
agent draw a card with one of the two maps; when the agent rang a bell to signal that they were 
ready, children guessed which map was on the card. As in previous experiments, neither time nor 
the difficulty of the maps was ever explicitly mentioned. 

Procedure. The training phase was the same as in Experiments 1 and 2. First Task: Which Map? 
Agents were described as playing the game for the first time. The experimenter explained that 
each person would take a card with a map on it, and ring a bell when they thought they knew the 
shortest road. On each trial, the experimenter showed the participant a slide with an Easy map a 
Hard map, and a video embedded between them, and reminded the participant of the task: “this 
person might get the card with this map [points at simple map] or they might get the card with 
this map [points at hard map]. Your job is to guess which map was on their card”. After the agent 
rang the bell, the experimenter said “They rang the bell, so that means that they think they’ve figured 
out the shortest road through the map. But which map was on the card they got?”. Children first chose 
one of the two alternatives and then were asked whether the agent was “probably” or “definitely” 
looking at the map; adults used a 4-point scale directly. In two Fast trials, the agent rang the bell 
after 3s, and in two Slow trials the agent rang the bell after 20s. The order of the trials and the 
color of the answers was counterbalanced.

Second Task: Difficulty & Accuracy. After the main task, participants completed two additional 
Fast trials. In one video, both cards had Hard maps. In the other, both had Easy maps. 
Participants were first asked which map the agent was looking at, but then also guessed whether 
the agent’s solution was correct or not, on a 4-point scale. The order of the Easy and Hard trials 
was counterbalanced. 

3.5.2 Results
The two ratings at each response speed were averaged to create a single score for each. The 
primary question of interest (Figure 3.4) was whether children would infer that the Fast agent 
was looking at the Easy puzzle. To test this, we centered children’s average ratings on the Fast 
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trials on chance performance (2.5 on a 4-point scale), and centered children’s age on the average 
age of the sample. This makes the intercept of the regression equivalent to a t.test for the whole 
sample, but allows us to simultaneously check for age effects, using age as a continuous variable. 
As predicted, children were more likely to infer that the Fast agent must have been looking at the 
Easy puzzle than the Hard puzzle (%Int = -0.68, SE = .076, p<.0001); the age effect was also 
significant, though smaller (%Int = -0.21, SE = .093, p<.026). To examine the developmental pattern 
more closely, we also conducted one-sample t.tests comparing each age to chance separately; all 
ages were significantly more likely to infer that the Fast agent was looking at the Easy puzzle than 
the Hard puzzle (MAge6 = -0.53, t(31)=-3.38, p=.002; MAge7 = -0.56, t(31)=-4.13, p=.00026; MAge8 = 
-0.95 t(31)=-10.2, p<.0001). The effect was similar for adults (MAge8 = -1.38 t(31)=-25.0, p<.0001). 
Next, we compared children’s inferences for Fast and Slow agents, using AgeYears and Speed as 
predictors. A repeated measures ANOVA revealed a significant effect of Speed (F(1,93)=28.11, 
p<.0001, $² = .232) but no effect of AgeYears or AgeYears*Speed interaction (AgeYears: F(2,93)=1.45, 
p=.24, $² = .03; AgeYears*Speed: F(2,93)=1.31, p=.27, $² = .027). Paired-sample t.tests revealed that 
the effect was similar for all age groups individually, including adults (Age6: MFast=1.97, 
MSlow=2.41, t(31) = 14.1, p<.0001; Age7: MFast=1.94, MSlow=2.58, t(31) = 14.2, p<.0001; Age8: 
MFast=1.55, MSlow=2.48, t(31) = 16.3, p<.0001; Adults: MFast=1.12, MSlow=3.88, t(31) = 70.5, p<.0001). 
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Fig 3.5. Violin plots and means with 95% CIs for two Fast trials in Experiment 3 in which participants 
first inferred which of two Hard or two Easy puzzles the agent was solving, and then predicted the 
agent’s accuracy on a 4-point scale. Though participants were equally likely to guess either puzzle 
when the difficulty was equalized, they predicted that the fast agent’s solution was correct for Easy 
puzzles and incorrect for Hard puzzles. Note that Easy and Difficult were left implicit; the complexity 
of the map was never explicitly mentioned.



Children’s judgments thus appear to integrate both the complexity of the puzzle and the 
agent’s response speed. This conclusion is further corroborated by the results of the second task 
(Figure 3.5), in which a Fast agent drew one of two Easy puzzles or one of two Hard puzzles: 
deprived of task difficulty as a cue, participants were no more likely to infer that the agent had 
drawn one than the other, in any age group (all p’s=n.s.; see Supplemental Materials). However, 
all ages were more likely to say that the agent had solved the Easy puzzle than the Hard puzzle 
(Difference scores: MAge6 = 0.56, 95 CI: 0.03–1.09; MAge7 = 0.81, 95 CI: 0.25–1.31; MAge8 = 0.91, 95 CI: 
0.50–1.31; MAdult = 1.35, 95 CI: 1.06–1.61), suggesting that they recognized the relative difficulty of 
the two puzzles. Estimations of absolute difficulty were less clear. Adults and children ages 7 and 
8, but not age 6, believed that the agent’s solution was correct for the Easy puzzle (MAge6 = 2.56, 95 
CI: 2.22–2.91; MAge7 = 3.12, 95 CI: 2.81–3.41; MAge8 = 3.03, 95 CI: 2.66–3.38; MAdult = 3.68, 95 CI: 3.52–
3.84), while children ages 6 and 8, but not adults or 7-year-olds, believed that the agent’s solution 
was incorrect for the Hard puzzle (MAge6 = 2.00, 95 CI: 1.66–2.38; MAge7 = 2.31, 95 CI: 1.97–2.69; 
MAge8 = 2.12, 95 CI: 1.91–2.38; MAdult = 2.28, 95 CI: 2.00–2.56).

3.6 General Discussion
Response time has been a powerful inductive tool in the behavioral sciences.  It has been used to 
infer preference strength (Konovalov & Krajbich, 2019), intelligence (Salthouse, 1996), the 
strength of memory traces (Singer & Tiede, 2008), and of course, diligence in online surveys. 
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Fig 3.4. Violin plots and means with 95% CIs for Fast and Slow trials in Experiment 3. Each dot is the 
average of each participant’s 2 fast trials (Green) or 2 slow trials (Blue). After watching an agent draw 
a card, look privately, and ring the bell to indicate when they think they know the shortest route, 
participants were asked which map the agent was looking at. Note that Easy and Difficult were left 
implicit; the complexity of the map was never explicitly mentioned.



Response times have even been argued to impose bottom-up constraints on models of perception, 
by comparing the maximum transmission speed of a single neuron with the time typically 
sufficient for basic perceptual tasks (Feldman & Ballard, 1982). Less attention has been paid to 
how laypeople themselves interpret response times. 

Our experiments provide evidence that from an early age, the commonsense intuition that 
“thinking takes time” may help us interpret everyday behaviors. Indeed, Experiment 3 suggests 
that children spontaneously integrate task difficulty to estimate how much time a task should take: 
all ages expected slower responses to harder problems than easier problems. These estimates may 
help children decide how fast is too fast for an agent solving a novel problem. Children appeared to 
recognize speed-accuracy tradeoffs and modulate their accuracy judgments according to task 
difficulty (Experiments 2 and 3). Moreover, when confronted with quick responses to hard 
problems, children believed that the agent must have recalled the answer from memory or seen it 
directly (Experiment 1). Given participants’ propensity to explain away fast responses as 
inaccurate, memory-based, or simple, it may seem inconsistent that only 8-10-year-olds inferred 
that agents who quickly solved complex novel problems were more competent than slower 
agents (Experiment 2). However, given the complexity of the hard puzzles, adults’ judgments 
may simply reflect the more sophisticated judgment that the fast agent had only “solved” the 
puzzle by a lucky guess.

The possibility of ‘lucky guesses’ illustrates an interesting contrast between reasoning about 
agents’ allocation of time and reasoning about their navigation of space: costs measured in time 
may be more malleable than costs in distance, making reasoning about the utility of agents’ 
actions on the basis of time more challenging — but also potentially more informative about the 
agent themselves. An agent that prefers a reward that is spatially distal over one that is spatially 
proximal must pay a higher cost to obtain the more valuable reward every time they do so; in this 
sense, space imposes a fixed cost to any physical action (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 
2017; Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016; Jara-Ettinger, Gweon, Tenenbaum, & 
Schulz, 2015). For instance, if the toddler in the dining room prefers the cherries in the kitchen to 
the dinner on the table, the distance to the kitchen is fixed both for them and their parent: no 
walking, no cherries. The immutability of spatial costs may make them particularly useful for 
analyzing rational action even in early infancy (Gergely & Csibra, 2003; Liu et al., 2017). In 
contrast, while it may take longer to count a bowl of 35 cherries than a bowl of 30 cherries, a lucky 
guess could get them the 35 cherries without having to count; moreover, developmental changes 
in counting skill and precision in approximate number estimation may lead to different expected 
values of each strategy for a toddler and their parent (Halberda & Feigenson, 2008; Baer & Odic, 
2019). Analogously, if an expert gives a quick estimate instead of a time-consuming calculation, 
we might infer that an ‘educated guess’ is sufficiently precise; but a novice who gives a quick 
estimate may not even understand the parameters of the question. In other words, while guessing 
and reasoning have their characteristic time signatures, successfully reasoning about time-costs 
may require us to consider context-specific factors like the complexity of the problem, the 
methods available to solve it, and potentially the competence of the agent. Thus, even with hard 
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constraints on mental speed, cost-based reasoning about time may require more sophisticated 
inferences than cost-based reasoning about space.

Timing’s sensitivity to context may also help explain why competence judgments show a 
protracted developmental trajectory in the existing literature (Nicholls, 1978; Stipek & Mac Iver, 
1989; Heyman & Compton, 2006): integrating multiple cues can be challenging for children. 
Neither speed, effort, nor accuracy alone signals competence: a competent agent must outperform 
the expected speed-accuracy tradeoffs because of their abilities. When simple heuristics like “more 
effort = better outcomes”, “better outcomes = more competent”, and “faster = better” imply 
conflicting competence judgments, children may find it difficult to weigh the relative importance 
of each dimension. Accounting for differences in motivation and attention adds to the challenge: 
conscientiousness and distraction can both increase response time, just as genius and haste can 
decrease it. However, recent computational work has suggested that by adulthood, people can 
distinguish distraction from focused thought by integrating the response time and complexity of 
the most likely topic of focus (Berke & Jara-Ettinger, 2021).

Children’s inferences in our experiments were less sophisticated than competence judgments, 
but also more general: thinking takes more time than remembering or seeing, more complex 
problems require more thinking, and some problems are impossible to solve immediately. 
However, while our aim was not to establish the earliest age at which children can reason about 
response time, task demands still limit our conclusions about younger children’s abilities. 
Though the rules to the puzzle game we used were simple enough that most children had no 
trouble learning them, the game was novel to children, and the procedure provided little 
reinforcement of the rules after the training. While our participants displayed precocious 
skepticism and sensitivity to task difficulty, novelty and low incentives may have hindered 
younger children’s performance. If children learn to simulate others’ mental processes through 
experience of their own mental processes in similar contexts, our study may have underestimated 
their capacities simply by giving them little experience solving the maps themselves 
(Sommerville, Woodward, & Needham, 2005; Meltzoff & Brooks, 2008; Kano et al., 2019). While 
the task was also novel for older children and adults, they may have also found it easier to 
simulate solving the maps for themselves before answering. Future work could test children’s 
performance in a more familiar context, or compare their performance with and without 
additional practice solving similar puzzles.  

Future work could explore the impact of inferences about time on children’s learning 
strategies. Some of these inferences may come from monitoring their own response time. For 
example, children increasingly modulate the time spent on easy versus difficult items in the 
Raven’s Progressive Matrices battery with age, and the degree of modulation is strongly 
correlated with performance (Perret & Dauvier, 2018). By adulthood, people’s problem-solving 
strategies not only weigh time costs in the hundreds of milliseconds, but may integrate both 
cognitive and physical costs (Gray, Sims, Fu & Schoelles, 2006; Feghhi & Rosenbaum, 2019). 
Choices between different strategies can be thought of in terms of opportunity costs: in addition 
to costs and benefits of each strategy individually, an individual who uses one strategy foregoes 
the opportunity to benefit from the other  strategy (Boreau, Sokol-Hessner, & Daw, 2015). Thus, 
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an understanding of how children learn to allocate time effectively may need to consider the both 
effectiveness of the problem-solving strategies available to them and the cognitive and physical 
tradeoffs between those strategies. For instance, in contexts that provide immediate accuracy 
feedback and little penalty for mistakes, it may be more rational to learn by trial-and-error than 
attempting to solve a problem through thinking alone. Future work could explore how children 
allocate time when the costs of error are high or low. Future work could also explore the use of 
response time in combination with other common social learning strategies. For instance, novices 
may be generally slow; but delays from experts may indicate a complex problem, a valuable 
solution, or a gap in the field’s knowledge. Thus, experts’ time allocation in particular may help 
learners estimate the value of persistence, either generally or for a specific task or problem-
solving method. Indeed, children persist longer at physical tasks after observing adults spend 
more time and effort, but only if the adult’s persistence paid off (Leonard, Lee, & Schulz, 2017; 
Leonard, Garcia, & Schulz, 2019).

Even in early childhood, the assumption that agents pursue goals efficiently by minimizing 
expected costs while maximizing expected rewards helps us reason about others’ preferences, 
knowledge, and beliefs (Jara-Ettinger, Gweon, Tenenbaum, & Schulz, 2015; Jara-Ettinger, Gweon, 
Schulz, & Tenenbaum,  2016; Gergely & Csibra, 2003). Much of this work has focused on the costs 
imposed by navigating complex spatial environments. As a fundamental constraint on every 
cognitive process and social interaction, time imposes costs that are even more ubiquitous, but 
may be more challenging to evaluate because of their sensitivity to context. Nevertheless, our 
results suggest that by age 6, the commonsense intuition that ‘thinking takes time’ — more time 
than perception and memory — may allow us to infer how another agent knows something as 
well as the quality and complexity of their knowledge. As children learn to integrate contextual 
information such as agents’ expertise and the difficulty of a problem, this simple intuition could 
scaffold more sophisticated reasoning about agents’ knowledge, intentions, and reliability.
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Chapter 4

Speed-accuracy tradeoffs in social 
cognitive inferences about groups

This chapter is based on materials taken from Richardson, E., Hok, H., Shaw, A., & Keil, F. C. (in prep). 
Herding cats: Children’s intuitive theories of persuasion predict slower collective decisions in larger and 
more diverse groups, but disregard factional power. submitted to Proceedings of the Cognitive Science Society

Abstract
Collaboration can make collective judgments more accurate than individual judgments, but it 

also comes with costs in time, effort, and social cohesion. But how do we estimate these costs? In 
two experiments, we introduce children and adults to two teams in which the teammates 
disagree about the optimal solution to a novel problem, and ask which team would need more 
time to reach a consensus decision. We find that all ages expect slower decisions from teams with 
more people or factions, and expect the number of factions to matter more than the number of 
people. But only adults expect decisions initially endorsed by a stronger faction to be faster than 
those endorsed by a weaker faction. Results are discussed in context of children’s reasoning about 
social power, and models of time-rational collective decision-making.
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4.1 Introduction
Reaching consensus can feel akin to herding cats: time-consuming and sometimes hopeless. But 
the struggle’s not unique to committees of colicky faculty or poorly managed advisory panels. 
Differences of opinion are inevitable in groups, and time spent debating those differences adds 
up. Since people may agree on what to do without agreeing on why, discussions can easily involve 
more opinions than people, even in groups debating a yes-no decision about a single option. 
While some of those debates are sure to be more substantive than others, the clock ticks just as 
quickly for groups quibbling over minutiae as groups deliberating about substantive issues. And 
since one person’s molehill may be another’s mountain, dissent could continue to undermine 
consensus indefinitely. But it doesn’t. We’re not cats, after all; humans excel at collaboration and 
coordination. By adulthood, it seems commonsensical that collaborators need to weigh the costs 
of debate against the benefits. In some cases, getting consensus on your side may simply be too 
unlikely or too time-consuming to make a difference of opinion worth debating. 

Clearly, the social dynamics that drive collective decision making are complex. But reasoning 
about how they contribute to decision speed doesn’t seem to require much effort. For instance, it 
seems commonsensical that large groups will need more time than small groups to make 
decisions, or that groups in which a strong initial consensus can pressure dissenters to concede 
will make decisions more quickly than groups facing multipolar negotiations with no initial 
consensus at all. We suggest that these inferences feel effortless because they are generated by an 
intuitive theory (or suite of them) which inputs our beliefs about the constraints on a group 
decision and outputs systematic inferences about the ways we can influence the group’s opinion 
dynamics — including outcomes, but also costs in time, effort, and social cohesion. Intuitive 
theories may begin as little more than a few salient cues and some beliefs about their causal 
connections (Keil, 2011; Mahr & Csibra, 2022), and they don’t need to be particularly accurate or 
precise. They simply need to allow us to navigate a conceptual domain in everyday life, and be 
flexible enough to accommodate conceptual change and development. 

Here, we provide evidence of systematic inferences about group decision speed in children and 
adults. We suggest these inferences may emerge from a few causally-connected intuitions about 
how group decision-making works: (1) expressing an opinion takes time, (2) debating differences 
takes even more, and while (3) not every difference of opinion is worth debating, a team’s size 
and structure can make the cost-benefit tradeoffs of debate different for different teammates. 

To illustrate how these intuitions generate predictions about decision speed, consider a robotics 
team deliberating over seven kinds of propeller for a drone (Figure 4.1). Discussion takes time, 
but any teammate can concede whenever they want — either because they’ve been convinced or 
because they simply don’t think it’s worth arguing further. However, one person’s unilateral 
concession is only guaranteed to save time in Panel 1, where the debate will end as soon as either 
teammate concedes (assuming the other doesn’t). By contrast, out of the five teammates in Panel 
2, only one person can end the debate unilaterally by conceding: after all, even if one of the other 
four conceded, their former allies could continue to argue. And in every other Panel, no single 
person can unilaterally end the debate: the teammates have to spend time coordinating within and 
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across factions in order to reach any consensus, regardless of whether they’re arguing for their 
own propeller or simply trying to find an expedient option.

In short, the harder it is for teammates to predict each others’ behavior, the more coordination 
will be needed to make a decision; and the more coordination required, the slower the team will 
be. These intuitions aren’t simply illusions. Agent-based models demonstrate that increasing a 
group’s size or preference diversity leads to slower decisions; and while lower decision 
thresholds (e.g., plurality or majority instead of supermajority or unanimity) can speed up 
decisions, they can also give stubborn minorities leverage over moderate majorities if swing 
voters are impatient (Albrecht, Anderson, & Vroman, 2010; Chan, Lizzeri, Suen, & Yariv, 2018). 
Our story is simply that if our intuitive theories make reasoning about these dynamics relatively 
effortless, we may be able to make more rational use of our time and effort in collective action. 
But the constraints on group decisions our intuitive theories are most sensitive to may change 
from early development to adulthood. We’ll return to this point in a moment. 

We predict that adults will expect slower decisions from teams with more people or factions. 
But we also predict that they’ll also expect quicker decisions from teams in which consensus is 
already strong at the outset than from teams in which power is initially more equally distributed 
between factions. Why? Because consensus is not just an outcome; it’s also an epistemic and 
normative influence on people’s responses to disagreement (Morgan & Laland, 2012; Kameda, 
Toyokawa, & Tindale, 2022). For instance, adults defer more to polls showing a 16v4 majority 
than either a proportionally weaker 11v9 majority or numerically weaker 4v1 majority (Mannes, 
2009). Being mutually aware that a team is converging on a consensus decision may put 
dissenters under increasing pressure to concede even if they disagree, and make the strongest 
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Figure 4.1. Five different robotics teams divided into two or more factions. Since they disagree, they 
need to talk together to make a decision about which propeller to use. Panels 2-3 have the same 
proportional distributions; teams in Panels 3-5 are the same size, but the faction endorsing the 4-blade 
varies in factional power across panels while representing the same proportion of teammates



faction increasingly difficult to fracture. Importantly, factional power is more than just degree of 
consensus. In teams with multiple factions, one faction’s power over another may depend as 
much on their dynamics with a third as their own size or proportion. In other words, factional 
power is a matter of “party discipline” (i.e., how strictly individuals subordinate their 
idiosyncrasies to the interests of their factions) as well as conformist tendencies (i.e., deference to 
consensus). However, conceptual development in early childhood often produces qualitative 
changes in our intuitive theories. Here, we examine 6-to-9-year-olds inferences about how the 
number of people, factions, and consensus strength affect decision speed.

We predict that young children, like adults, will expect slower decisions from teams with more 
people or factions. Why? First, talk takes time, and reasoning about the relationship between 
time, effort, and task difficulty emerges early. Even four- and five- year-olds expect agents to take 
longer to complete more difficult physical tasks (Leonard, Bennet-Pierre, & Gweon, 2019); and by 
age six, children also begin to expect agents to take longer to solve more complex reasoning 
problems, unless the agent has seen the solution before (Richardson & Keil, 2022). So, children 
may infer that having more factions or people on a team leads to slower decisions because it 
makes coordination into a more complex or effortful task. Second, children may also be able to 
infer how much talk goes into resolving disagreements by drawing on their own experience of 
collaborative reasoning. Three-year-olds explicitly dispute statements they believe to be false 
(Köymen & Tomasello, 2018), but how much of their reasoning they verbalize depends on what 
they expect their collaborators to know already (Köymen, Mammen, & Tomasello, 2016). And 
while preschoolers do evaluate each others’ reasoning, they only begin to engage in meta-talk 
comparing higher-order evidence such as their relative confidence or their informants’ reliability 
between the ages of five and seven (Köymen & Tomasello, 2018). Along with believing that 
difficult tasks take longer and that coordination gets harder in larger groups, being inefficient 
collaborators could make children especially sensitive to how increasing the number of people or 
factions on a teams can slow down collective decisions. 

However, reasoning about how consensus strength impacts decision speed may be more 
challenging for children. Why? First, at least one mechanism that allows adults to speed up group 
decisions seems to be less reliable in children: while preschoolers conform to majority opinion in 
both informational and normative contexts, stronger deference to proportionally larger majorities 
only emerges around age six or seven, even with only two factions to consider (Morgan, Laland, 
& Harris, 2015). That is, preschoolers are no more deferential to a 9v1 majority than a 6v4 
majority — and they are selective about when they defer to majorities to begin with (Burdett et 
al., 2016; Haun, van Leeuwen, & Edelson, 2013, Pham & Buchsbaum, 2020). And children don’t 
simply become more deferential; they also become more selective about deferring. Though seven 
year olds are more likely to defer when uncertainty is high, they are also more likely to point out 
when they think the emperor is clearly naked (Morgan et al, 2015). Second, strategic deference in 
group contexts is rarely just a matter of votes; it often depends on how we evaluate each others’ 
approximate explanations of matters we only partially understand to begin with (Keil, 2006). 
Children are much less skilled than adults in adjudicating conflicting explanations, and often 
strikingly overconfident in their own knowledge (Kloo, Rohwer, & Perner, 2017; Mills & Keil, 

48



2004). Taken together, these findings suggest that (1) disputes over idiosyncratic and fundamental 
differences may not be as strictly triaged or efficiently resolved in groups of children as in groups 
of adults, and that (2) at least one mechanism that speeds up decisions in adults — stronger 
epistemic deference to stronger consensus, particularly without argument — may be less reliable 
in children. Thus, while children may expect slower decisions from teams with more factions or 
more people, they may not expect consensus strength to increase decision speed. 

To be clear, however, the claim is not that children fail to recognize differences in consensus 
strength per se. Even preschoolers can accurately represent and compare small differences in 
numerical sets (Halberda & Feigensen, 2008). Moreover, we think it’s clear that children can make 
some inferences about power from relative group size (Pun, Birch, & Baron, 2016; Heck, Bas, & 
Kinzler 2021). For instance, by 6-9 months, infants expect an agent with only one ally to make 
way for an agent with two allies, even if the one ally is physically larger than the two allies put 
together (Pun, Birch, & Baron, 2016). And preschoolers infer that even though larger groups are 
more likely to “get the stuff”, smaller groups are more likely to “be in charge” — suggesting that 
children not only recognize the strength in numbers, but also that authority is vested in the few 
(Heck, Bas, & Kinzler 2021). If children expected power differences to scale with size differences, 
they might also infer that stronger consensus would lead to faster decisions. Pun et al’s (2016) 
studies were not designed to test whether power scaled with proportional differences (infants 
only saw groups of 3 and 2); but while Heck et al. (2021) did that find children and adults were 
more likely to attribute authority to proportionally smaller groups, their strength-in-numbers 
inferences did not scale with size. Taken together with Morgan et al., (2015), these findings 
suggest that reasoning about consensus strength and its effect on decision speed may involve 
capacities still developing between the ages of 6-9.

4.2 General method
In two pre-registered experiments, we tested our predictions by presenting children and adults 
with pairs of robotics teams deciding which of seven kinds of propeller would make a drone fly 
the best. In each trial, the two teams vary in the number of people, factions, or both. Participants 
are told that the teammates on each team will have to talk together to decide which propeller to 
use. They then rate how sure they are that one team or the other would take longer to decide on a 
seven-point scale (with the midpoint indicating no difference), and briefly explain their 
reasoning.

4.3 Experiment 1
4.3.1 Method
In Experiment 1, we asked children and adults to infer which of two teams would take longer to 
make a decision. Across three trials, we manipulated the number of people (Size), factions 
(Diversity), or both (Contrast). In the Diversity trial, two teams with the same number of people 
(10) were split into a different number of factions (2v7). In the Size trial, two teams with the same 
number of factions (2) differed in the number of people (10v20). In the Contrast trial, the team 
with more people (20v10) was split into fewer factions (3v7). We predict that both children and 
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adults will expect slower decisions from teams with more factions or more people, and that they 
will treat the number of factions as more important than the number of people (i.e., in Contrast). 
However, we expect these inferences to be specific to decisions: in a second task following the 
experiment (Build), we ask which of two teams (20v10) would take longer to build their drone, 
after a consensus decision had been agreed upon. In the Build trial, we predict that participants 
will expect a smaller team to take longer than a larger team: whereas the task of reaching 
consensus divides a team against itself, many hands may make light work once consensus is 
reached. The Build and Contrast trials also help rule out a simple “more is more” heuristic. If 
participants are simply mapping the “more time” response to the team with more people or more 
factions, they will expect no difference in decision speed when one team has more people and the 
other has more factions, and they will infer that that the larger team will take more time to build a 
drone. 

Participants. We recruited 80 children in two age groups (40 age 6-7, M=6.95, SD=.50, and 40 
age 8-9, M=8.98, SD=.58; 34 girls, no non-binary genders reported), as well as 41 adults through 
mTurk. One additional child fussed out before completing the experiment and was replaced.

Procedure. After practicing with the response scale, children were told that they would see two 
teams each making a remote control drone, but that the teammates disagreed about which of 
seven kinds of propeller (differentiated by the number of blades, from two to eight) would make 
the drone fly the best. The experimenter told the child that they would see “which kind of 
propeller each person on each team thinks is best”, and that the teammates would need to talk 
together to decide which kind of propeller to use. The child’s job was “to say which team you 
think will take longer to decide which kind of propeller to use”. They were then shown three trials 
in one of four counterbalanced orders. In each trial, participants first saw a group of students, 
represented as silhouettes, divided into two teams (allowing for easy visual comparison of the 
total number of people on each team), and then were shown each teammate “standing next to” 
the propeller they thought was best. The experimenter then told the participant “So now, all the 
people on the blue team have to talk together to decide which propeller to use. And all the people on the 
green team have to talk together to decide which propeller to use. But, which team will take longer to decide: 
the blue team, the green team, or will they take the same amount of time?”. Children were then asked 
whether they were “just a little sure, pretty sure, or very sure?”; adults responded directly on a 
sliding scale. Participants were then asked to explain why they thought that team would take 
longer to decide. Finally, at the end of experiment, participants completed one trial of a second 
task: they were told that the next two teams had already decided which kind of propeller to use, 
and all agreed — but now, they needed to build their drone. One team was shown to have 10 
people while the other had 20 people; participants were told that each team would start building 
at the same time, and asked which team would take longer to finish building their drone.

4.3.2 Results
Results. Results are displayed in Figure 4.2. We conducted separate linear regressions on the 
child sample alone for each contrast Type, with responses centered on the midpoint of the 7-point 
scale and age in years centered on the midpoint of the children’s age range (7.5 years), according 

50



to our pre-registered analysis plan.  This makes the intercept equivalent to one-sample t.test 
versus the scale midpoint while allowing us to simultaneously account for potential age effects. 
There was no effect of counterbalance for any measure or age group, so we reduced the model to 
just Ct_Values ~ Ct_AgeYears for each contrast Type. As predicted, children expected slower 
decisions from a team with more factions than one with fewer (Diversity: βIntercept = 2.35, SE = .13,  
p<.001, 95CI: 2.10–2.60); and when the team with more factions had fewer people, they expected 
the number of factions to matter more than the number of people (Contrast: βIntercept = 1.71, SE = 
.20,  p<.0001, 95CI: 1.31– 2.11). No age effects were observed in either trial. Moreover, the child 
sample as a whole expected slower decisions from teams with more people than fewer (Size: 
βIntercept = -1.05, SE = .21,  p<.0001, 95CI: -1.46– -0.64). But they also inferred that once the 
teammates had all agreed about their design decisions, a team with fewer people would take 
longer to finish building a drone than one with more (Build: βIntercept = 1.48, SE = .22,  p<.0001, 95CI: 
1.04– 1.91). However, age effects were significant for both Build and Size, with older children more 
likely than younger children to infer that larger groups would take more time to decide, and less 
time to build (Size: βCt_AgeYears = -0.50, SE = .19,  p<.01, 95CIs: -0.87– -0.13; Build: βCt_AgeYears = -0.41, 
SE = .20,  p=.039, 95CI: -0.80– -0.02). Following our preregistered analysis plan, we also conducted 
one-sample t.tests comparing each age group (6-7s, 8-9s, and adults) to chance separately for each 
measure. Unlike adults and older children, the expectation of slower decisions from the larger 
team was not significant for the youngest children in the Size trial (M = -0.60, t(39)= -1.71, p<.095, 
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Figure 4.2a-b. Results from Exp 1. Shading indicates age group, grey labels display means, error bars 
are 95% CIs. Facets display critical slide from procedure. (A) Decision time: each participant rated 
each trial, in counter-balanced order. (B) Build time: each participant rated build time after 
completing all three decision trials. 



95CI -1.31—0.11). However, all other by-age-group t.tests were consistent with our primary 
analysis: all ages expected slower decisions from teams with more factions in the Diversity and 
Contrast trials, and slower builds from smaller teams in the Build trial. 

What do these results tell us about participants’ reasoning process? First, expecting the number 
of people on a team to have opposite effects on decision speed in the Build and Size trials shows 
that participants distinguished between the physical task of building and cognitive task of 
making a collective decision about how to build drone. Moreover, responses to the Contrast and 
Build trials demonstrate that participants were not simply mapping a “more time” response to the 
team with more people or more factions. Instead, participants’ inferences about decision speed 
appeared to be driven by some notion of how the number of people and factions on a team affects 
the time needed to reach consensus. Roughly, this means reasoning about about some notion of 
disagreement, broadly construed; but there are a number of ways it could work that are less 
sophisticated than what we have in mind. For instance, one might simply assume an outcome 
(either majority rule, or whichever propeller seemed best to the participant themselves), an infer 
decision speed from the number of opponents remaining to be convinced. This is akin to the kind 
of reasoning predicted by our account, but because it’s blind to differences in power that make 
some outcomes more likely than others, it will often generate counterintuitive predictions. For 
instance, one might expect convincing four people to always require the same amount of time, 
regardless of the number of factions and people in them (e.g., 16v4, 16v1v1v1v1, 2v4, 1v4, etc). In 
Experiment 2, we ask participants to infer which team would take longer given that both teams 
chose the optimal propeller. This allows us to control the numerical and proportional size of the 
winning and losing factions as well as the total number of people and factions, ruling out 
heuristics that assume a specific outcome or focus on a single numerical feature.

4.4 Experiment 2
4.4.1 Method
Experiment 2 probes participants’ reasoning about how consensus strength affects decision 
speed. We predict that all ages will infer slower decisions from teams with more factions or 
people. But if the winning faction has less power relative to its opponents on a small team than 
the winning faction has on a large team, we predict that while adults will expect consensus 
strength to matter more than size, children will infer the opposite. For instance, adults might 
expect a minority rule outcome on a team of six to take longer than a majority rule outcome on 
team of twelve, children will infer the opposite. However, because Experiment 1 and the pilot 
data for Experiment 2 suggested that younger children’s (ages 6-7) size inference may not differ 
from chance despite recognizing the impact of the number of factions, our preregistration treats 
older children as the primary developmental contrast for the trials in which size and factional 
power are contrasted. Younger may show the same pattern as older children; but if they do not 
differ from chance, further work would be needed to understand why. 

Participants. Based on power analysis, we recruited 100 children in two age groups (50 age 6-7, 
M=6.88, SD=.67, and 50 age 8-9, M=8.98, SD=.67; 60 girls, no non-binary genders reported), as 
well as 50 adults through MTurk. Two children fussed out before completing the experiment and 
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were replaced; six adults were screened out and replaced before completing the experiment for 
failing an attention check. 

Materials. We created four trials intended to contrast different dimensions of the distribution 
of opinions on each team: the size of each team, the number of options initially endorsed, and the 
proportion and number of teammates who had initially disputed the group’s final decision. In 
two trials (Maj_Min, SuperMaj_vs_Maj), one team was twice the size of the other, but each team 
was split between two options, and choosing the correct propeller would require the team to 
convince 4 people to change their answer (Maj_Min: 8v4 or 2v4; SuperMaj_vs_Maj: 16v4 or 6v4). 
In the other two trials (SuperMin_MinDiv, SuperMaj_PluralityDiv), each team was the same size, 
but one team was split between all six options while the other team was split between only two 
options , with a either a plurality or majority initially endorsing or opposing the correct propeller 
(SuperMin_MinDiv: 4v16 or 4v6v3v2v2v1; SuperMaj_PluralityDiv: 16v4 or 6v4v3v2v2v1).

Procedure. The procedure was similar to Experiment 1, with the following changes. (1) First, 
during the introduction, participants were additionally told that “the kind of propeller that’s actually 
the best for the kind of drone these teams are both building is the one 4-blades”, after which the 4-blade 
propeller was highlighted in yellow and remained highlighted for the remainder of the 
experiment. (2) Second, after seeing during each trial what each teammate on each team thought 
was best, participants were prompted to remember which propeller was actually best. (3) Third, 
the experimenter told participants to pretend that both teams had ultimately chosen the correct 
propeller, saying: “Now the teammates on each team have to talk together to decide which propeller to 
use. And each team might decide to use the 4-blade propeller, or they might not. And we don’t know which 
propeller they’ll choose after they talk. But, let’s pretend we do know. Let’s pretend that after they talk, both 
the blue team and the green team do decide to use the 4-blade propeller. So, which team do you think had to 
talk for longer, if both teams decided to use the 4-blade propeller: did the blue team take longer, did the green 
team take longer, or did they both take the same amount of time?”. (4) Finally, after rating how sure they 
were that one team or the other would take longer and explaining why, the experimenter told the 
participants “Now we’re done pretending for a minute. Remember, we don’t actually know which 
propeller each team will decide to use — but, I want to know which propeller you think each team will use”, 
and for each team, asked the participant to predict whether the team would decide to use the 4-
blade propeller after talking.

4.4.2 Results
Results. Results are displayed in Figure 4.3. Experiment 2 provides direct evidence against a 
number of heuristics simpler than the kind of reasoning about disagreement we have in mind. 
Across trials, children and adults made systematic inferences even when we controlled (1) the 
total number of people, (2) the total number of factions, (3) the number of “losers” (4) the 
proportion of “losers”, and (5) the number and proportion of “winners”. 

On the SuperMaj_PluralityDiv and SuperMin_MinDiv trials, each team had 20 teammates; as 
predicted, children and adults expected slower decisions when they were divided into 7 factions 
than when they were divided into only 2 factions — not only when the team with more factions 
was contrasted with a team with a stronger winning faction (SuperMaj_PluralityDiv: 16-winners-
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vs-4-losers-in-1-faction and 6-winners-vs-14-losers-in-6-factions: Myounger= 5.18, t(49) = 4.24, 
p<.001; Molder=5.26, t(49) = 5.28, p=.003,, Madult =6.50, t(49) = 17.43, p<.001), but also when 
contrasted with a team with the same number and proportion of both winners and losers 
(SuperMin_MinDiv: 4-winners-vs-16-losers-in-1-faction and 4-winners-vs-16-losers-in-6-factions: 
Myounger= 4.64, t(49) = 2.59, p=.013; Molder=4.70, t(49) = 3.08, p=.003,, Madult =4.80, t(49) = 2.54, 
p=.014). One-way ANOVAs revealed that younger children were significantly less confident than 
adults on the SuperMaj_PluralityDiv trial; but older children’s responses were not significantly 
different from either younger children’s or adults’ for either trial (SuperMaj_PluralityDiv: F(2, 
147)=54.77, p<.001, ηp² = .13; Younger—Adult: t(147)=-4.11, p < .001; Younger—Older: all p’s ns; 
SuperMin_MinDiv: F(2, 147)=0.65, p= ns; Older—Adult: t(147)=-0.27, p < ns; Younger—Adult: 
t(147)=-0.43, p < ns). 

On the Maj_Min and SuperMaj_Maj trials, each team was divided into 2 factions that left each 
team with the same number of “losers” to convince, but also made one team on each trial twice 
the size of the other (Maj_Min: 8v4-and-2v4; SuperMaj_Maj: 16v4-and-6v4). As predicted, adults 
inferred on both trials that the decision would have been slower when the winning faction was 
proportionally weaker, but children inferred that decisions would have been slower in the 
numerically larger team, even though the winning faction was proportionally stronger  (Maj_Min: 
Myounger= 3.38, t(49) = -2.56, p=.014; Molder= 3.36, t(49) = -2.33, p=.024; Madult = 5.36, t(49) = 6.11, 
p<.001; Supermajority: Myounger= 2.90, t(49) = -4.27, p=.001; Molder= 3.42, t(49) = -2.02, p=.049; Madult = 
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Figure 4.3. Results from decision speed task in Experiment 2. Participants were told that the propeller 
that was “actually the best” was the 4-blade propeller (highlighted in yellow), and told to pretend 
that both teams chose the best propeller after talking together. Facets display critical slide from 
procedure for each trial; each participant rated each trial, in counter-balanced order. Shading 
indicates age group, grey labels display means, error bars are 95% CIs.



5.00, t(49) = 4.24, p<.001). As predicted, these age differences were significant for older children 
(Maj_Min: Older-Adult: t(147)=-5.71, p < .001; SuperMaj_Maj: Older-Adult: t(147)=-4.28, p < .001). 
The pattern for younger children also differed from adults, but was indistinguishable from older 
children (Maj_Min: Younger-Adult: t(147)=-5.65, p < .001; SuperMaj_Maj: Younger-Adult: 
t(147)=-5.69, p < .001. 

Since SuperMaj_Maj and SuperMin_MinDiv each contrasted two teams in which the winning 
faction was the initial majority, these results also speak against the possibility that inferences 
about decision speed are simply an artifact of assuming that only one of the teams (that without a 
majority) would need any time at all to make a decision. But when asked to predict each team’s 
final decision, all ages expected majority rule — and to a lesser extent, plurality rule (i.e., in teams 
with many factions) — regardless of whether the propeller endorsed by the initial majority (or 
plurality) faction was the optimal decision or not (Figure 4.4). In other words, both children and 
adults predicted majority rule (and to a lesser extent, plurality rule), but their inferences about 
decision speed were not simply an artifact of assuming majority rule as a fait accompli.

4.5 General Discussion
Group consensus doesn’t emerge solely from epistemic judgments. It’s often negotiated, 
expedient, and costly to achieve. One cost is time. But collaborators who need to coordinate their  
decisions with each other no longer have unilateral control over the time they spend on a 
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Figure 4.4. Choice predictions in Experiment 2. After inferring which team in each trial would have 
taken longer if both teams had ultimately chosen the 4-blade propeller described participants were 
told was “actually best” (highlighted in yellow), participants were asked which propeller they 
thought each team would actually choose, as a forced-choice between the 4-blade propeller (yellow) 
and any other propeller (red). Grey labels show means; error bars are 95% CIs. 



decision or the decision itself. Instead, a decision’s speed and accuracy both depend on social 
dynamics. And to manage speed-accuracy tradeoffs in groups, collaborators need to know how 
to pick their battles. Reasoning about endogenous constraints on group decision speed, such as 
the size and structure of a group, may allow collaborators to estimate the time needed to 
coordinate around one decision or another. Taken together, these two experiments suggest that 
some of the intuitions that may help us decide which battles are worth the time emerge in early 
childhood — but they may also undergo qualitative changes as a result of conceptual 
development. 

Adults and children as young as six expected slower decisions from teams with more people or 
more factions. And these inferences were specifically about decisions: all ages expected that once 
consensus had been reached, drones would take longer to build in teams with fewer people to 
work on them. But while adults expected stronger initial consensus to speed up consensus-
congruent decisions (and slow down consensus-incongruent decisions), children expected slower 
decisions from larger teams even when consensus was stronger than on the smaller team. We 
doubt children’s size-over-strength inferences are due to a failure to realize that consensus was 
stronger on one team than the other. Even preschoolers can easily distinguish the vote ratios (2:1, 
3:2, 4:1) we used in the two-faction trials (Halberda & Feigenson, 2008). And children did predict 
majority-rule, suggesting that they didn’t have trouble recognizing the consensus preference — 
they simply didn’t expect consensus strength to matter more than team size. 

But why not? After all, group decisions aren’t faster when consensus is stronger simply 
because of some arbitrary eccentricity. Agent-based models suggest that consensus strength is as 
much of an endogenous constraint on group decisions as the size of the group or the number of 
factions: lower decision thresholds (e.g., plurality or majority instead of supermajority or 
unanimity) and more impatient voters can speed up decisions, just as more people or more 
diverse preferences can slow them down (Albrecht, Anderson, & Vroman, 2010; Chan, Lizzeri, 
Suen, & Yariv, 2018). And these aren’t just foibles of human decision-making. Other species 
encounter the same dynamics. When temnothorax ants urgently need to find a better nest, they 
lower their quorum threshold — enabling the “votes” of a smaller number of scouts to trigger a 
migration (Pratt & Sumpter, 2006). And when schooling fish choose a foraging patch, increasing 
the number of no-preference voters makes it harder for strong-preference minorities to overrule 
weak-preference majorities (Couzin et al., 2011; Ward et al., 2008). But other species’ decisions are, 
presumably, less dependent on the kinds of metacognitive intuitions that make human judgment 
so flexible even among children; they don’t adopt arbitrary rules to coordinate with collaborators 
or treat them as morally binding only for those who agreed to them (Grueneisen & Tomasello, 
2019; Schmidt, Rakoczy, Mietzsch & Tomasello, 2016), and they don’t use discussion to adjudicate 
ethical and rational dilemma (Domberg, Köymen, & Tomasello, 2019). 

So why didn’t children expect consensus strength to matter more than team size? We suspect a 
confluence of factors. As noted above, individual inefficiencies in communication add up quickly 
in large groups. And since children are much less skilled than adults at resolving conflict through 
meta-talk and reason-giving (Köymen & Tomasello, 2018), it wouldn’t be unreasonable for them 
to expect slower decisions from larger groups in general; after all, when consensus is controlled, 

56



so do adults. But while in adults, strength-dependent deference to consensus can short-circuit 
endless dissent and redundant commentary, this deference is only beginning to emerge around 
ages 6-7 (Morgan, 2015; Schmidt et al., 2016). Moreover, while children can explicitly justify the 
use of different decision-making procedures in different contexts (Helwig & Kim, 1999; Hok, 
Gerdin & Shaw, 2019), a more rigid sense of procedural justice (e.g., “everyone should have their 
say”) could make majority rule as time-consuming as unanimous consensus. 

Consider three examples of how the contrast between power and right could affect children’s 
reasoning about the impact of consensus on social dynamics in group decision-making. First, 
when a group doesn’t give a child opportunity to agree to their justification for distributing 
resources unequally, they are six to eight times more likely to object than if consulted first 
(Grocke, Rossano, & Tomasello, 2018). Consulting every member of a group in advance may take 
less time than handling their objections, but it would still make group decision-making more 
time-consuming in larger groups than smaller groups. Next, when groups agree to norms (e.g., 
about which puppets can play where), preschoolers treat dissent as nullifying the norm-
establishment entirely — although they will occasionally protest if someone who agreed to a 
norm disregards it (Schmidt, et al., 2016). Our experiments examined a different context (artifact 
designs aren’t arbitrary norms, and dissenters couldn’t build their own drone), but if children are 
willing to allow single dissenter to veto a decision favored by nine other group members, they 
may not expect dissenters concede more quickly simply because they face a stronger consensus. 
And given that patience for dissent, children’s inferences here may even accurately reflect their 
experience of group decision making: if stronger consensus doesn’t put stronger pressure on 
dissenters to concede more quickly, group size may have a greater impact than consensus 
strength on decision speed. But lacking direct tests of children’s collective decision times, 
whether or not children’s inferences accurately reflect their experience — and whether 
developmental changes in reasoning about factional power could improve speed- accuracy 
tradeoffs in collective decision-making — are questions for future work. Finally, whereas adults 
believe that communities will count individuals as belonging to whichever subgroup the most 
powerful (larger, wealthier, and more prestigious) clique decrees — even without the individual’s 
consent — children insist that even socially-perceived group identity requires consent from the 
individual themselves (Noyes, Gerdin, Rhodes, & Dunham, 2023). Our experiments examined 
opinion-based factions within a cooperative team instead of identity-based groups in a shared 
space; but if children are more respectful than adults of individuals’ right to veto their socially-
perceived identities, they may be also be more respectful of their right to make dissenting 
arguments — which would prevent consensus from speeding up decision making.  

Most work on collective judgment has focused on its accuracy (Chittka, Skorupski, & Raine, 
2009; Kameda, Toyokawa, & Tindale, 2022); and so has most work on children’s strategies for 
learning from others (Harris, Koenig, Corriveau, & Jaswal, 2018). But good judgment isn’t cheap: 
time spent improving accuracy is time lost for pursuing other goals, and the perfect may be the 
enemy of the good. Recent work has suggested that cost-reward reasoning may be fundamental 
to commonsense psychology (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017). For instance, we 
not only expect others to rationally tradeoff expected costs against expected gains in pursuing 
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goals — we also infer what agents know and believe they can learn from the costs of action 
they’re willing to pay (Aboody, Zhou, Jara-Ettinger, 2021; Aboody, Davis, Dunham, Jara-Ettinger, 
2021; Aboody, Dension, Jara-Ettinger, 2021). But past work has typically quantified costs using 
physical dimensions (e.g., effort, distance traveled) or the risk of failure (Jara-Ettinger, Gweon, 
Schulz, & Tenenbaum, 2016). Time costs are more more ubiquitous than physical costs: every 
decision takes time, regardless of whether it involves movement or a probabilistic outcome. But 
they may also be more difficult to interpret (Richardson & Keil, 2022). Since time spent on a task 
is a matter of choice in ways physical costs can’t be, time costs are more flexible; but whereas 
individual decision speeds are only constrained by the efficiency of biological processes and the 
complexity of the task itself, needing to coordinate collective decisions means that individuals no 
longer have (unilateral) control over speed-accuracy tradeoffs. Our experiments suggest that 
ceding unilateral control over time spent on collective decisions doesn’t mean individuals cede all 
control: early-emerging intuitions about how group decision speeds are constrained by their size 
and structure may allow individual collaborators to weigh their beliefs about the value of 
different choices against easily-quantifiable constraints on the time it would take a group to 
converge on them. In some cases, expedience may be preferable to accuracy. 

Of course, as the animal literature illustrates, stronger consensus can lead to faster decisions 
even without explicit representations of speed-accuracy tradeoffs, simply because the group is 
closer to its decision threshold from the outset (Conradt & List, 2009). And lacking the capacity to 
reason explicitly about those tradeoffs doesn’t mean that coordinated collective decision-making 
can’t be worth the costs (Miller, Garnier, Hartnett, & Couzin, 2013). But it’s important to bear in 
mind that social dynamics in collective decisions are to some extent consequences of our beliefs 
about them: the more collaborators expect each other to concede more quickly to stronger 
consensus, the more pressure to do so dissenters may feel. These kinds of reflexive expectations 
can provide collaborators with a lever and a place to stand for more strategic inferences about 
each other’s behavior. For instance, formal rules for quorum and decision threshold can make 
coordination easier, but they can also give swing voters disproportionate power, enable filibusters 
and agenda manipulation, and so on (Chan, Lizzeri, Suen, & Yariv, 2018; Levine & Plott, 1977; 
Pietraszewski, 2022; Pietraszewski & Shaw, 2015). Research into children’s reasoning about 
factional power may help us understand the constraints on group dynamics. More broadly, the 
metacognitive capacities that make our inferences about complex social dynamics seem 
commonsensical may make us especially efficient at guiding collective action (Heyes, 2016).
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Chapter 5 

Conclusions
This chapter contains text from the following manuscripts:

Richardson, E., Hok, H., Shaw, A., & Keil, F. C. (in prep). Herding cats: Children’s intuitive theories of 
persuasion predict slower collective decisions in larger and more diverse groups, but disregard 
factional power.

Richardson, E., Davis, I., & Keil, F. C. (in prep). Agenda setting and The Emperor’s New Clothes: People 
infer that letting powerful agents make their opinion known early can trigger information cascades 
and pluralistic ignorance.

Richardson, E., & Keil, F. C. (2022). Anger, evidence, & trending opinions: We trust consensus when we 
believe it reflects genuine persuasion. PsyArXiv. 

Richardson, E., Miro-Rivera, D., & Keil, F. C. (2022). Know your network: People infer cultural drift 
from network structure, and expect collaborating with more distant experts to improve innovation, 
but collaborating with network-neighbors to improve memory. Proceedings of the Cognitive Science 
Society, 44.

Cumulative culture highlights the extent to which collaborative and individual learning 
capacities mutually constrain each other. Collaboration allows cumulative culture to expand 
beyond our individual learning capacities; but as it expands, our individual capacities for skillful 
collaboration increasingly become the limiting factor in what we can learn either alone or with 
others. My central point here has been that skillful collaboration means thinking about how our 
collaborators’ judgments are constrained by the interactions between them. This in itself is not a 
new idea. On the contrary: if thinking about those constraints didn’t feel intuitive enough to be 
fairly frequently commented on, they probably wouldn’t be much help in explaining our skill in 
collaboration to begin with. After all, the social dynamics collaborators face are both 
extraordinarily complex and very fast-moving; if they were also counter-intuitive, we wouldn’t 
have much chance of handling them adaptively. 

5.1 What happened in Chapters 2-4?
The experiments I’ve presented in this dissertation aimed to provide theoretically motivated 
descriptions of how some of the aforementioned commonsense intuitions emerge across 
development. I’ve intentionally avoided heuristics that require learners to have prior knowledge 
of differences between informants themselves (e.g., in expertise, past accuracy, or perceptual 
access). Instead, I focused on how children’s and adults’ inferences about the speed and reliability 
of a third-party judgment might be constrained by features more endogenous to those judgments: 
the nature of the problem itself, the number of informants facing it, the time needed to solve it 
given the means available, and the degree of consensus and dissent concerning its solution. I 
began, in the introduction, by talking about how these features hang together in a broad sense. 
What are the expected costs and benefits of deliberation for individuals and groups? How is the 
difficulty of a problem related to the means available for solving it and the time needed to do so? 
How does the perceived difficulty of a problem itself or the difficulty of resolving disagreement 
change the way we reason about the costs and benefits of private or collective deliberation? How 
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does the size and structure of a community affect the difficulty of solving a problem or resolving 
disagreement? Each chapter addressed overlapping subsets of these questions.

In Chapter 2, children and adults expected small discussion groups to be more help than 
“crowdsourcing” individual solutions for problems that could be solved through demonstrative 
reasoning, regardless of how difficult or easy they appeared to be — but a developmental shift in 
all three experiments suggested that while children expect larger crowds to be more helpful than 
smaller crowds, they may also either overestimate the benefits of group deliberation or 
underestimate its risks. In Chapter 3, children and adults inferred that the time needed to solve a 
problem when someone first encounters it depends on how complex it is, but the time needed to 
see or recall a solution is unrelated to its complexity. And in Chapter 4, children and adults infer 
that group decision speeds and accuracy both depend on the number of people and factions in a 
group; but only adults show clear evidence of reasoning about how the balance of factional 
power constrains a group’s decisions.

5.2 What have we learned about the kinds of capacities that 
enable collaboration? 
One of the take-home messages I’d like to endorse is that the kinds of inferences participants 
made in these experiments are critical to our capacity for learning from (and with) others — and 
thereby, to the remarkable pace of human cumulative culture. But the experiments I reported 
didn’t provide measures of in-situ behavior; and while even children appeared to find the 
inferences commonsensical, it’s possible that the intuitions I’ve examined in this dissertation 
don’t make us better collaborators. After all, metacognition doesn’t always guide behavior; when 
it does, it doesn’t always make us better learners; and in any case, since the optimal learning 
strategies for individuals and their groups aren’t always congruent or even compatible, one may 
be selected for more strongly than the other. Approaches that are more fine-grained and 
behaviorally-grounded than those adopted here could improve our understanding of how our 
intuitions about the risks and benefits of collaboration affect individual and collective learning. 
So before I summarize what I think I can say we have learned, consider some examples of nuances 
those conclusions may need to account for.

5.2.1 Limitations & closer looks
In Chapter 4, children expected slower decisions from groups with more factions or more 

individuals, but only adults expected stronger initial consensus to speed up decisions. These 
inferences are consistent with results of agent-based models showing that increasing a group’s 
size and diversity slows down decisions, while lowering their decision threshold (e.g., plurality 
or majority instead of supermajority or unanimity) speeds up decisions. But those same models 
also show that when agents are able to represent their collective decision-thresholds, preferences 
for speedy or slow decisions take on a pivotal role: just a few impatient swing voters may give a 
stubborn minority enough leverage to overturn a moderate majority (Chan, Lizzeri, Suen, & 
Yariv, 2018). Overturning a majority may or may not make the decision more accurate, or 
maximize speed-accuracy tradeoffs; and even if it maximizes tradeoffs for collectives, it may not 
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do so for individuals. For instance, even though lowering their quorum threshold allows 
temnothorax ants (like humans) to make faster collective decisions between nests of similar 
quality, it does so in part because individual ants (like humans) still spend significantly longer 
evaluating nests that are more similar than nests that are more distinct (Pratt & Sumpter, 2006; 
Sumpter & Pratt, 2009; Sasaki, Stott, & Pratt, 2019). The point is that even if individuals’ 
metacognitive inferences about collective dynamics do influence their collaborative behaviors, 
whether or not that influence makes them more better learners — or members of a collaboration 
— is a separate (and more complex) question.

Participants’ inferences in Chapter 2 could also benefit from more nuanced analyses. The 
experiments in Chapter 2 were motivated by the observation that even though Condorcet-
adjacent theories would predict more reliable consensus judgments from large crowds than small 
discussion groups, small groups often outperform both the average and majority response in 
large crowds, as well as their own best members  (e.g., Mercier & Claidière, 2022, Navajas et al., 
2018). And that performance gap is consistent with some of the theoretical advantages of 
information processing in groups (Hinsz, Tindale, Vollrath, 1997; Kameda, Toyokawa, Tindale, 
2022). But the congruency between participants’ inferences in Chapter 2 and specific empirical 
and theoretical advantages of groups and crowds is still too coarse-grained to make strong claims 
about how adaptive our commonsense intuitions really are. For instance, while the preferred 
response to the “non-reasoning” questions in each experiment (i.e., challenging perceptual 
discriminations or population preferences) shifted across development from a five-person 
discussion group to fifty-person crowd, the more reliable option for those questions may not 
always be the large crowd. Why not? 

Recall that Condorcet’s assumption of statistical independence between judges is routinely 
violated in the biological world, even if judges don’t influence each other directly: judges often 
share cognitive and perceptual biases as well as a learning environment, which means they’ll 
often rely on the same sources of evidence and interpret that evidence in similar ways. If a 
perceptual task falls afoul of our biologically inherited perceptual biases, relying on consensus in 
a larger crowd will simply amplify their mistakes. The same thing can occur when (as is typical in 
shared learning environments) judges each use a mix of jointly- and independently-observed 
cues which are themselves more or less correlated with each other and vary in reliability. Suppose 
that, unbeknownst to you, the burgers at Bobcat Bite are likely to be great on days when Greta’s 
in the kitchen (M-W-F) and “merely” good on days when Gordon is (T-Th-S). If you ask your 
friends about about Bobcat’s burgers, how well their consensus judgment predicts whether or not 
you get a great burger clearly depends less on whether they all went on the same day than on 
which day(s) people are most likely to go. But it also turns out that when your friends are more 
likely to have gone on the same day, you’ll often be better off asking fewer of them about their 
experience: larger crowds will more accurately reflect the quality of the burgers coming out of the 
kitchen that day, but since Greta and Gordon work equally often, larger crowds will also 
underestimate the odds of getting a great burger and overestimate the odds of getting a merely 
good burger (Kao & Couzin, 2014). After all, a crowdsourcer is simply inheriting the crowd’s 
biases, and a larger crowd just amplifies those biases. But if your friends have the right kinds of 
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skills, allowing them pool their evidence in groups offers a variety of ways to make their 
judgment more reliable, even if they can’t engage in demonstrative reasoning. In some contexts, 
you don’t even need to assume those skills include language (Kao et al., 2014). If learners’ 
confidence is calibrated to their accuracy, pooling evidence can mean simply sharing 
metacognitive signals (Bahrami et al., 2010); it will still be sufficient to make two heads better 
than one. Alternatively, suppose that all learners can decide for themselves is whether to base 
their own vote on a jointly-observed or an independently-observed cue, and they can only see the 
payoffs of following the cue endorsed by a majority (but not the payoffs of the unendorsed cue); 
in this case, standard reinforcement learning algorithms allow learners to identify the more 
reliable cue more quickly and accurately than if they learn the associations individually and their 
votes are artificially aggregated at each round (Kao et al., 2014). 

In short, strong generalizations about the value of consensus-based learning strategies not only 
need to consider consensus’ reliability in light of the ground-truth dependencies for a specific 
question (e.g., Prelec, Seung, & McCoy, 2017), they also need to consider whether consensus 
outperforms alternative strategies — and if so, why. For instance, eliciting independent judgments 
from large crowds can be time-consuming; but, as Chapter 4 shows, even children know that 
group deliberation can time-consuming as well. And speed-accuracy tradeoffs are just one 
dimension on which to compare group- and crowd-based learning strategies. One might also 
contrast their costs and benefits in social cohesion, demands on individual effort (Miller, Garnier, 
Hartnett, Couzin, 2013), or their robustness across learning environments that change over time 
(Boyd & Richerson, 1995). 

Finally, the phenomena studied in Chapter 3 exemplify the same kinds of concerns about speed 
and accuracy discussed above, but at the level of individuals instead of groups. Given the 
complexity of the puzzles used, one could argue that some responses in Experiment 2 (i.e., 20s 
trials for complex maps) and Experiment 3 (i.e., 3s trials for complex maps) suggest that both 
children and adults are wildly underestimating the time needed to accurately solve a complex 
problem. But if we expect others’ intuitions about speed-accuracy tradeoffs to be similar than our 
own, then the speed of their response tells us something about the degree of accuracy they think 
is worth trying to achieve. The social learning literature has emphasized that blind trust in others’ 
judgment is unlikely to be adaptive because of the potential costs in accuracy; but skepticism has 
costs too — in time (among other things). If Alice can’t trust Bill’s assessment of the speed-
accuracy tradeoffs he faced in a given problem, double-checking his work may cost her more time 
than collaborating with him saved her. These kinds of intuitions may be critical to the phenomena 
discussed in Chapter 4, especially as groups grow larger: a conversation full of pedants won’t 
simply drag on far longer than it needs to — it will collapse under its own weight as people lose 
the thread of conversation amid the quibbles and clarifications.

5.2.2 Developmental changes: learning to reason about reasons?
Each chapter in this dissertation suggested significant changes across development. The most 

revealing patterns may be the increasing preference for crowdsourcing over small group 
discussion in Chapter 2 (particularly in Experiment 3) and the contrast between children’s belief 

62



that team size would affect decision speed more than initial consensus strength and adults’ 
opposite belief in Chapter 4. 

One explanation that may account for both patterns is changes in children’s understanding of 
the non-epistemic reasons people form (and change) beliefs, and the errors and biases those 
reasons can introduce. In each experiment in Chapter 2, the developmental shift towards 
crowdsourcing only affected non-reasoning questions; the tendency to refer reasoning questions 
to small group discussion was essentially identical across age groups and experiments. This shift 
may be particularly revealing in Experiment 3, where the youngest children preferred small 
group discussion for both reasoning and non-reasoning questions. Why? Increased 
crowdsourcing for the non-reasoning questions in Experiments 1 and 2 could be due to children’s 
increasing awareness that crowdsourcing is the method for determining population preferences; 
this would explain both the developmental shift in Experiments 1 and 2 and participants’ greater 
confidence in a 50-person crowd (Experiment 2) than a 5-person “crowd” (Experiment 1). But in 
Experiment 3, the preference for discussing difficult perceptual judgments couldn’t be explained 
by their difficulty (since the preference was stronger for the reasoning questions, which were 
easier according to a pre-test); and so children may have either overestimated the discussion 
group’s ability to discern accuracy without demonstration, or underestimated the potential for 
discussion to distort perceptual judgments. Children’s responses in Experiment 2 of Chapter 4 
may reveal a similar kind of reasoning: they may have inferred that consensus wouldn’t speed up 
decision-making because they believed that even if majority rule ultimately prevails, it’s not 
because people who found themselves in the minority immediately conceded — people have to 
be convinced, or at least have a chance to disagree. The same story could be told about 
Experiment 2 in Chapter 3: the youngest children may have been less confident than adults that 
too-fast responses to difficult questions were wrong because it would require them to explain 
why an agent was claiming knowledge he simply hadn’t had time to acquire. In short, one 
possibility for a general account of children’s responses is that, roughly speaking, they expect 
people’s beliefs to be more influenced by good reasons than bad reasons, regardless of whether 
these influences are social or asocial. 

Changes in our confidence in other people’s discernment (i.e., being more compelled by good 
reasons than bad reasons) would be consistent with a commonly observed developmental bias: 
we’re more likely to attribute true beliefs to others than false beliefs. This may be an adaptive bias 
for learners who are as deeply dependent on others’ knowledge as children are, particularly if 
they can count on their informants’ discernment of each other’s knowledge. But it would also 
raise questions about how we learn to update our beliefs when an informant’s reliability is put in 
doubt. For instance, 4-year-olds trust a 3-to-1 consensus when they hear Bob and Carol repeat 
Alice’s whispered testimony about the contents of a box after she and David each look inside; but 
they reject the consensus when Alice had announced that she was going to “pretend” to know 
instead of looking before whispering to her friends (Kim & Spelke, 2020). But reasoning about 
perceptual access is a familiar, firsthand competence. The rational update for a layperson might 
be less clear if Alice announced that her statistical analysis of racial disparities in police shootings 
controlled for differences in the number of encounters — phenomena such as Simpson’s paradox 
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and collider bias require culturally transmitted conceptual systems for evaluating evidence (Ross, 
Winterhalder, & McElreath 2018). The division of cognitive labor means that learners have to 
outsource evaluating their informants’ reasons on the merits to still other informants. But 
exposure to the explanatory preferences of experts in different fields may help us learn to discern 
more abstract features of good and bad reasons; it may also help us discern whether Alice’s 
mistakes are a result of biases, bad reasoning, or general lack of expertise.

5.2.3 Beyond demonstrability
The three sets of studies in this dissertation all focused on how people reason about agents 

facing problems with more-or-less demonstrably correct answers. Though humans’ capacity for 
solving these kinds of problems is thought to be critical to cumulative culture, focusing on that 
capacity also omits the greater part of human life: as social animals, we’re usually much more 
occupied by coordination, convention, and arbitrary norms than we are by solving high-
demonstrability problems. How might participants’ inferences in Chapters 2-4 change if agents 
were facing decisions like where to meet for lunch, which side of the road to drive on, or which 
job candidates will bring the most prestige to an organization?

To the extent that solutions to these kinds of problems aim for consensus rather than “truth”, 
and consensus can emerge without deliberation (e.g., through stigmergy, self-organization, silent 
conformity), one possibility is that people will see the costs of deliberation as more salient than 
the benefits. However, the lack of a truth criterion may also reduce consensus about which costs 
and whose costs are most relevant, and since deliberation becomes impossible in larger groups, 
choosing to deliberate may also entail decisions about whose costs are represented in the 
deliberation to begin with. For instance, a silent vote or even an executive decision can tell people 
where to meet for lunch with less time and effort than deliberation; but they’re not as good at 
accounting for costs like conflicts between one person’s food allergies and another’s dietary 
preferences. Similarly, the costs of driving on the wrong side of the road are too high to allow 
consensus to emerge spontaneously, but since the optimal solution may need to satisfy too many 
constraints to entrust to a general vote, decisions may need to be delegated to a deliberative 
committee or an expert planner— in other words, to a (more-or-less representative) government. 
And since groups typically default to majority rule when demonstrability is low (Laughlin, 2011), 
participants might also assume that agents’ deliberation would be more strongly shaped by 
deference to majority preferences.

The broader point here is that the greater diversity of potentially relevant costs in problems 
without a truth criterion may make people’s reasoning about the experimental contrasts much 
more dependent on their scenario-specific inferences than high demonstrability problems are. For 
instance, participant in Chapter 2 might have inferred that five people choosing a lunch spot for 
themselves should discuss instead of voting (in Experiment 1). But if she believes the decision is 
being made for a larger group (i.e., because Experiments 2 and 3 contrast a 5-person discussion 
with a 50-person crowd), or if she’s just seeking recommendations for herself, she may choose the 
50-person vote because of concerns about representation (either in the sense of giving people a 
voice in decisions that bind them, or in the sense of avoiding sampling bias in crowdsourced 
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reviews). The experimental procedure in Chapter 4 makes concerns about representation and 
sampling bias less relevant, but if people expect majority preferences to more strongly influence 
decisions about lunch spots than decisions about drones, even children might treat factional 
power as more important than team size. And in Chapter 3, an agent’s response speeds to 
questions about arbitrary conventions may still reveal something about the its complexity or the 
agent’s familiarity with it, but questions about the agent’s “accuracy” lose meaning.

5.3 Cognitive  systems at the group level
Where does this leave us? It’s worth considering the implications that early-developing 

intuitions about collaborative learning may have for a fundamental question in the cognitive 
sciences: what counts as a cognitive system? On the one hand, cognitive scientists are ostensibly 
concerned with describing and explaining such systems. On the other hand, asking a cognitive 
scientist to explain what makes a system cognitive may be embarrassing; there is no consensus 
account, nor a single criterion for evaluating them (Adams & Aizawa, 2001). What does this 
debate have to do with our intuitions about collaborative learning? 

Briefly put: those intuitions may help us understand the nature of cognitive systems at the 
group level. Here’s the bones of the argument (I’ll flesh it out in a moment): if certain hallmarks 
of human cognitive functioning perform best in groups, and show characteristic error patterns 
when tested in isolated agents, these error patterns may mark the joints of distributed cognitive 
systems. The division of cognitive labor that we observe in the storage of acquired knowledge 
and in the acquisition of new knowledge arguably provides these marks. And an early-
developing preference for group over individual processing — one accompanied by a suite of 
intuitive theories producing systematic inferences about how to minimize errors in the storage 
and acquisition of different domains of knowledge — may imply that human cognition is built to 
take advantage of distributed processing when appropriate.

5.3.1 Carving the (collective) mind at its joints
A fruitful approach to psychological research has been to “carve the mind at its joints”. But 

over the last twenty years, the extent of the mind itself has been subject to intense debate, fueled 
by research suggesting that distribution of cognitive labor across multiple agents may be as 
essential to memory (Wegner, 1987; Theiner, 2013; Mahr & Csibra, 2018) and learning (Goldstone 
& Theiner, 2017; Keil, 2006; Harris, 2002) as it is to technological development (Kitcher, 1990, 1993; 
Mesoudi, 2017). One view has proposed that the mind should be considered to include any 
process that it necessarily relies on to function, such that, were it inside the head, we would 
consider it to be part of the mind — for example, an amnesiac and the notebook he uses to 
replace his memory (Clark & Chalmers, 1998). Critics retort that this criterion leads to “cognitive 
bloat” and a loss of explanatory power. After all, physiological adaptions have also transformed 
humans into obligatory cooks: even when using blenders to reduce the load on teeth and the 
digestive system, raw foodists find it difficult to eat enough volume or variety to maintain health. 
Yet, our dependence on frying pans and blenders doesn’t lead us to speak of “extended 
digestion” (Sterelny, 2010). Rather, digestion is explained primarily by the internal organs, just as 
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the amnesiac’s memory is primarily explained by the amnesiac’s cognitive processes rather than 
the properties of the notebook. Critics who take this view would predict that even if humans 
frequently rely on artifacts to scaffold cognition, perception, and memory, it’s unlikely that 
cognitive science will discover interesting regularities governing human-artifact interactions 
(Adams & Aizawa, 2001; 2008).

Like others (e.g., Theiner, Allen, & Goldstone, 2010; Sterelny, 2010; Heersmink, 2015), I take this 
to be a helpful critique of many human-artifact interactions in many respects. But if, as seems to 
be the case, an individual human mind is sufficiently modular to be “carved at the joints” in a 
way that allows both the modules and the mind as a whole to still be considered paradigmatic 
cognitive systems, then the objection to human-artifact systems (namely, that their “joint” 
capacities are explained entirely by the capacities of the human mind) doesn’t seem to apply. This 
means that at least some kinds of cognitive systems can be linked in ways that produce a new 
macro-system, with capacities that neither component has. The individual human mind, 
consisting of coupled modules, is one such macro-system; but human groups, particularly in 
collaborative problem-solving, may be another. However, on this view, the explanatory focus 
needs to change: since cognitive systems often interact with each other, saying that all interacting 
cognitive systems are macro-systems doesn’t tell us anything new. Instead, we need to 
understand what kinds of links allow macro-systems to gain capacities the component-systems 
didn’t have, and what kinds of capacities the component-systems need in order to manage their 
interdependence. 

One approach to these questions has been to focus on the kinds of mechanisms and 
phenomena that are relevant to a broad range of “linked” systems: network size and structure, 
connection bandwidth, and how these features affect the efficiency and reliability of diffusion and 
inhibition processes (Goldstone & Theiner, 2017). These are common manipulations in research 
on cumulative culture. For instance, while a community can simply be too small to maintain a 
broad knowledge base (Kempe & Mesoudi, 2014; Derex et al., 2013), subdividing sufficiently 
large social networks into smaller clusters can increase its knowledge base by changing explore-
exploit decisions (Derex & Boyd, 2016). Though conformist tendencies may still influence 
individual agents’ exploration patterns within clusters, between-cluster influences are reduced, 
allowing clusters to drift apart. Restoring the lines of communication between clusters then 
allows them to combine what they’ve learned, producing innovation. In “rugged” fitness 
landscapes, which contain multiple good-but-not-optimal solutions, fragmenting networks can 
thus increase learning by encouraging individual learners to explore more diverse options 
(Mason, Jones, & Goldstone, 2008). Simulation studies and in-lab experiments suggest that these 
manipulations can dramatically increase the speed of cultural accumulation. Moreover, in at least 
some domains technological improvements can accumulate over time even if individual agents 
have no understanding of the causal mechanisms underlying the technology they’re developing 
(Derex, Bonnefon, Boyd, & Mesoudi, 2019).
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5.3.2 Local errors, local illusions, and protocols for collaborating in 
social networks

But, at least in the case of human groups, another approach may be to rely on some of the same 
kinds of techniques used to carve the individual mind at the joints — with some modifications: if 
individuals are being studied in isolation from groups, then to some extent, the joints have 
already been carved — the point is to understand how they fit back together. Consider three 
examples of how this kind of approach might lead to reinterpretations of existing work, and 
provide a framework for further study.

5.3.2a “Lesioning” groups. 
Lesions to individual brains produce systematic errors or a loss of capacities that rely on 

interdependence between the systems, but still allow the component systems to perform 
cognitive functions for which that interdependence was not causally relevant (something that, at 
least prior to the last decade, most artifacts no longer did after being separated from their users). 
If a cognitive system is distributed across multiple agents, one might expect individuals to make 
systematic errors in isolation that they don’t make when collaborating with a group — for tasks 
that involve that system. Group advantages for certain kinds of reasoning and memory tasks 
appear to show precisely those kinds of errors. Evidence I reviewed in Chapters 1 and 2 suggests 
that small group discussion allows learners to solve reasoning problems that prove to be 
impossible to solve individually, even for the group’s best members (e.g., Laughlin, Bonner, & 
Altermatt 1998; Moshman & Geil, 1998). But forcing individuals to work alone — i.e., carving 
them out of their social networks — doesn’t reduce performance across the board. Individual 
reasoners are very good at evaluating arguments they disagree with; it’s their ability to produce 
arguments for their own positions that appears to be lazy and biased. In other words, their errors 
are systematically biased, and biased in precisely the way you would expect if individuals were 
preemptively outsourcing responsibility for critiques to group members who disagreed (Mercier, 
2016). Accounts differ on whether these biases have genetic (Mercier & Sperber, 2011; 2019) or 
cultural roots (Heyes, 2019; Dutilh-Novaes, 2020), but both emphasize the distributed nature of 
reasoning. 

Research on transactive memory systems has prompted similar arguments. Intimate couples 
and members of naturally occurring groups are often aware of each partner’s domain of 
expertise, and outsourcing responsibility for that domain to a partner allows them to outperform 
pairs or groups of strangers and their own individual performance (Wegner, 1987). Moreover, 
assigning a memory strategy that conflicts with their natural division of labor harms intimate 
couples’ performance, but helps strangers’ performance. That is, simply having agents interact 
doesn’t make them into a single cognitive system distributed across two minds. But some 
transient groups do form transactive memory systems (Liang et al., 1995), and the more that the 
task actually necessitates cooperation between group members in order to succeed, the stronger 
this system becomes (Harris, Barnier, & Sutton, 2011; Brandon & Hollingshead, 2004; Theiner, 
2013). As with reasoning, recent accounts have suggested that some aspects of memory (e.g., 
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episodic memory in particular) are naturally distributed among social partners (Mahr & Csibra, 
2018; Theiner, 2013). 

5.3.2b Illusions of knowledge. 
Visual illusions are phenomenological experiences in which gaps in the information available 

to a system are filled in by its best guess about what should be there. But our sense of how much 
of our knowledge is “in the head” is often illusory as well. For example, individual speakers can 
successfully use words like “beech” and “elm” to communicate with each other about their 
intended referent, even though they’re unable to distinguish the two trees for themselves. On a 
strong externalist account, the meanings of these words are simply not stored in our heads at all 
(Putnam, 1975); on an internalist account, the meanings are in a head, just not the speaker’s head — 
the speaker’s words refer to concepts that are stored in the head of an expert who can distinguish 
between them (Jackson, 1998). But on either account, the cognitive system that supports the 
“meaning of words” is distributed. However, it’s often the case that considerable torque has to be 
applied to our phenomenological experience before we realize how much of what we know “ain’t 
in the head”. For instance, in one study (Kominsky & Kei, 2014), laypeople overestimated the 
number of differences they can name for words whose referents are easily distinguishable to 
experts (ferret-weasel, dinner-supper, or cucumber-zucchini), but not for synonyms or word pairs 
with well-known differences (e.g., dog-wolf, or baby-infant). Similarly, laypeople are more likely 
to claim that they personally understand a novel phenomenon when told that scientists have 
published a complete explanation of it than when told that scientists did not yet understand it 
themselves, or when told that the scientists’ explanation was a classified state secret (Sloman & 
Rabb, 2016). 

But importantly, illusions of knowledge aren’t just egocentric biases; they can be amplified by 
collaboration and attenuated by re-establishing social contexts (e.g., observing others, or 
explaining without access to collaborators). For instance, in one study (Richardson & Keil, 2021), I 
showed that if children are “scaffolded” with subtle hints while trying to figure out how to use a 
complex mechanical artifact that 0% of unscaffolded children learned to use alone, 93% of 
scaffolded succeed; but even among 9-10 year olds, only 35% recognized that they needed the 
help.  However, after observing a third-party being scaffolded, recognition that scaffolding was 
necessary doubled. Similarly, children and adults often overestimate how well they understand 
the details of complex artifacts and other complex causal systems; but asking them to provide 
step-by-step mechanistic explanations — the kind you would have to give to demonstrate your 
understanding to other people — reduces their confidence considerably (Rozenblit & Keil, 2002; 
Mills & Keil, 2004). 

5.3.2c Commonsense intuitions about collaborative learning. 
Systematic errors and illusions of knowledge could mark the lesioned joints of a distributed 

cognitive system. But unlike modular systems in a single brain, our groups aren’t hardwired into 
a single biological interface: other people have their own beliefs, goals, and social networks to 
maintain. Recruiting assistance from a group won’t be worth Alice’s time and effort if it turns out 
that Bob and Carol flatly refuse to cooperate with each other, or if David absconds with a subset 
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of the knowledge and skills the group needed to accomplish a task, or if no one is willing to 
disagree with Alice herself about anything. The point is, collaborators need to be able to manage 
their interdependence with other parts of a distributed system in order for those systems to do 
any work. But the kinds of problems collaboration excels at solving are sufficiently varied and 
complex that the kinds of pre-compiled evolutionary programs that drive cooperative behavior in 
other eusocial species are unlikely to work for humans. The human capacity for collaboration 
may need to be guided by introspectively accessible metacognitive intuitions. By analogy: if 
computers were considered cognitive systems, we might ask what specialized programming 
allows them to form networks, and to what extent they require certain types of networks to 
accomplish certain kinds of tasks. Early-developing commonsense reasoning about how our 
collaborations are constrained by speed-accuracy tradeoffs and the mutual influences between 
our collaborators and their communities may be one kind of “network protocol” for managing 
our distributed capacities. To be clear, the kind of intuitive reasoning I’ve focused on in this 
dissertation may improve our capacity for collaborative learning even if it turns out that there are 
no group-level cognitive systems. And as noted above, much more empirical data and theoretical 
development would be needed to show what explanatory power could be gained by treating 
individual minds as components of group minds.

5.4 Conclusions
Humans are a spectacularly successful species. Though cumulative culture has advanced 

technology beyond what any individual could learn on their own, children and adults are adept 
at identifying reliable sources to learn from using a variety of cues to expertise. However, humans 
also learn with others, and by adulthood, we form our social networks into ad hoc groups, long 
term collaborations, and institutional structures — each governed by a variety of formal and 
informal decision rules. Research emerging in the past twenty years has suggested that the size 
and structure of these groups play a significant role in cumulative culture; but their impact on 
children’s learning and the individual psychological capacities that allow us to learn from them 
are still unclear. 

Technological developments in the last 10 years appear to have radically expanded our social 
networks, and underline the need for cognitive scientists to study information processing in 
groups, including its developmental origins. Children’s intuitive theories of group cognition, and 
their ability to form groups of different structures to solve different kinds of problems, may 
provide a framework for doing so. This dissertation has presented evidence for early-emerging 
commonsense intuitions about the costs and benefits of using groups and crowds to process 
information and solve problems that exceed their individual capacities. I’ve also given a sketch of 
how these intuitions could shed light on the architecture of group-level cognitive processes.
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Appendix A 

Supplemental Materials
A.1 Supplement to Chapter 2
A.1.1 Experiments 1 & 2: Comprehension Questions

After the test questions in Experiments 1 and 2, we asked two comprehension questions 
(“Comp_TT” and “Comp_AA”) to test more explicitly whether participants were considering the 
effects of information sharing in a setting familiar to children. In these questions, Jack’s teacher 
was giving a test to Jack’s 5 informants, and participants were asked whether the 5 people should 
answer by Talking Together or by Answering Alone. In Comp_TT, the teacher wanted “the 5 
people to get as many answers right as possible”; in Comp_AA, the teacher wanted to “find out 
which of the 5 people did their homework and which ones didn’t”. If children understand how 
discussion changes the informativeness of individual responses, they should recognize that 
Answering Alone is more informative to the teacher in Comp_AA. If they understand the benefits 
of discussion (or at least, information sharing), they should prefer Talking Together for Comp_TT. 

In Experiment 1, children’s responses to the comprehension questions suggest that even the 
youngest were able to choose a method of responding consistent with what the teacher wanted to 
learn about the students (Comp_AA: MYoung= 65%, p=.04, MOld= 87.5%, p<.0001,  MAdult= 92.5%, 
p<.0001, Comp_TT: MYoung= 70%, p=.008, MOld= 85%, p<.0001, MAdult= 87.5%, p<.0001).

As in Experiment 1, responses to the comprehension questions at the end of Experiment 2 
suggested even the youngest children recognized that talking together would make it impossible 
for the teacher to know who had done their homework  (Comp_AA: MYoung= 67.5%, p=.019, 
MOld= 92.5%, p<.0001,  MAdult= 90%, p<.0001). However, while older children and adults 
recognized that the students would do better on the test if they could discuss their answers, 
younger children were at chance (Comp_TT: MYoung= 52.5%, p=.4373, MOld= 90%, p<.0001, MAdult= 
90%, p<.0001). Children in Experiment 2 may have been less confident in the value of discussion 
than their responses to the the main task questions in Experiments 1 and 2 would suggest; 
however, informal questioning of participants after the experiment suggested that younger 
children in Exp 2 may have simply rejected talking together on a test as cheating, even though the 
question specified that the teacher themselves could choose to allow students to talk together.

A.1.2 Supplementary Methods for Experiment 3
Norming Experiment. In order to confirm the difficulty level of the Hard Percept and Easy 

Reasoning questions in Experiment 3, we first ran a norming experiment on MTurk with a 
separate group of 42 adult participants. Three participants were screened out for failing to answer 
basic comprehension questions about their job in the HIT.
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We created 8 questions (4 Percept and 4 Reasoning) that we expected participants to rate as 
“easy” to answer and another 8 questions (4 Percept and 4 Reasoning) that we expected 
participants to rate as “hard” to answer. Each participant saw 8 questions: either the 4 Easy 
Reasoning and 4 Easy Percept questions, or the 4 Hard Reasoning and 4 Hard Percept questions.  
We expected the Hard Percept questions to be rated as more difficult to answer correctly than the 
Easy Reasoning questions. Each participant was asked “How difficult would it be to answer the 
question?”, and rated the difficulty on a 7 point scale, from Extremely easy to Extremely difficult. 

The Percept questions: 
Photorealism: decide which of two pictures of a face is a photo and which is a photorealistic 
drawing made by a talented artist. These materials adapted from Looser & Wheatley, 2010,  
which morphed faces using photographs and dolls as the anchors. We used Morph 3. The Easy 
version used Morph3_052Human and Morph3_067Human. The Hard version used 
Morph3_063Human and Morph3_065Human.  
Intuitive Psychophysics (Superballs): decide how many marbles an opaque box contains by 
listening to it being shaken. This task was adapted from Siegel, Magid, Tenenbaum & Schulz, 
2014. Two recordings were created. The Easy version asked whether the box contained 2 or 10 
marbles (the recorded version contained 2). The Hard version asked whether the box contained 
30 or 40 marbles (the recorded version contained 40).

Brightness (Stars): decide which of the stars in a starry night sky looked the brightest. A picture 
of a starry night sky over a desert was used to represent the night sky, and the protagonist was 
said to have taken the picture so that he could “circle the brightest ones”. In the Easy version, he 
wanted to circle the 3 brightest stars. The Hard version he wanted to circle the 25 brightest stars. 

Rotation Speed: identify which of twelve colored diamonds is rotating the fastest. Each 
diamond had an A, a K, or a W in it to make the rotation clearer, but in the Hard version, the 
diamonds all had approximately the same RPM, while in the Easy version, the RPM was overall 
slower, and one was a clear outlier. The matrixes below show the number of rotations of each 
item in the Hard and Easy 4x3 arrays during the 10s display. In the Hard array, the fastest made 
27 rotations in 10s, but 3 others made 26 and 2 made 25 rotations. In the Easy array, the fastest 
made 19 rotations in 10s, and the next closest made 12. 

The Reasoning questions: The reasoning questions were adapted from Experiments 1 and 2.  
Sudoku: Experiments 1 and 2 used a 4x4 sudoku problem rated as “easy” in a compilation, 
replacing the numbers with fruit to make it kid-friendly. The Easy version in Experiment 3 
completed two additional moves. The Hard version used a 9x9  rated as “hard” in a compilation.

Hard (# Rotations/10s) Easy (# Rotations/10s)

24  22  21  27
26  26  26  25
25  22  25  22

8   6  10  7
6   3   7   19
8   9  12  11
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Vehicle Routing Problem: Experiments 1 and 2 used a custom made pathfinding puzzle which 
required a MarioKart find the shortest road through all the treasures on a map without taking 
“two in a row that are the same color, or two in a row that are the same shape”. The Hard version 
used in these experiments had 11 treasures of different shapes and colors scattered randomly 
around the map.  The Easy version created for Experiment 3 reduced the number of treasures to 
4, of only 3 shapes and colors.   
Bottle-Jar Extraction Task: Experiments 1 and 2 presented an “impossible object” puzzle, 
requiring the solver to remove a stick from a bottle without breaking the bottle or the stick. The 
stick was held fast inside the bottle by a nut-and-bolt. This was used as the Hard version. The 
Easy version substituted an analog of the “floating peanut” task (e.g., (Hanus, Mendes, Tennie, & 
Call, 2011), requiring the solver to remove a rubber ducky from large open-neck jar half-full of 
water, without touching the ducky or the jar, by pouring in the water from another jar. 

Nim: In the game of Nim, each side takes turns picking up pencils. Each turn, you have to pick 
up either one, two, or three pencils. The winner is the person who picks up the last pencil. In 
Experiments 1 and 2, the we showed a game with only 5 pencils left. As adults and some older 
children found this 5-item version easy to solve, we created a Hard version by leave 22 pencils, 
and emphasizing that a wrong move would let a “super-smart computer” opponent win. 

Norming Experiment: RESULTS. We fit a mixed effects model to perceived difficulty ratings, 
with random slopes and intercepts for each participant and question to account for repeated 
measures. The model confirmed that participants expected the Hard questions to be more 
difficult to answer than the Easy questions, (β = 1.95, SE = .5523, p = .0055). With the exception of 
the Easy version of the Percept_Stars question, which was rated as significantly more difficult 
than other Easy questions (β = 2.45, SE = .0.4988, p < .0001), the questions within each difficulty 
level did not differ amongst themselves in perceived difficulty. Experiment 3 contrasted the Easy 
versions of the Reasoning questions with the Hard versions of the Percept questions; if 
participants preference for group reasoning in Experiments 2 and 3 was driven by the perceived 
difficulty of the question, then participants in Experiment 3 will favor group reasoning more for 
the Hard Percept questions than the Easy Reasoning questions. 

A.1.3 Cross-Experiment Exploratory Analyses
We conducted several exploratory analyses comparing results between experiments to examine 

the effects of crowd size and and question type more broadly. Experiment 1 and Experiment 2 
used identical questions, but Experiment 2 increased the size of the crowd from 5 to 50 people. 
Our preregistered prediction was that participants would favor the crowd for population 
preference questions, but continue to  favor the group for reasoning questions. However, we can 
also test the direct effect of crowd size by comparing people’s judgments for reasoning and for 
popularity questions in Experiment 1 to their judgments in Experiment 2. Experiment 3 again 
used a crowd of 50 people, but contrasted easy versions of the reasoning questions from 
Experiments 1 and 2 with challenging perceptual discrimination tasks. This allowed us to test 
whether the preference for group discussion was caused by the perceived difficulty of the 
question. However, it also allows us to test whether the preference for crowdsourcing observed in 
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Experiments 1 and 2 extended to questions with a more ambiguous relationship to crowd size 
than population preferences.

To explore the effect of crowd size, we ran separate ANOVAs for each QuestionType  using 
AgeGroup & Experiment as predictors (Exps 1 and 2). The tenfold increase in crowd size had no 
impact on participants’ preference for discussing reasoning questions in small groups (F(1, 
234)=0.045, p=.8320); an AgeGroup*ExpNum interaction was significant (F(2,234)=4.434, p=.0129), 
but post-hoc comparisons revealed only a marginal difference between younger children’s and 
adults’ preference for reasoning in groups in Exp 1, but no other differences. However, 
participants were significantly more likely to crowdsource popularity questions in Experiment 2 
than Experiment 1 (F(1, 234)=19.303, p<0.0001), with no differences between age groups. 

To explore whether the crowdsourcing preference was as strong for perceptual discrimination 
problems as population preference questions, we ran an ANOVA comparing the two types of 
non-reasoning questions, using AgeGroup & Experiment as predictors (Exps 2 and 3). 
Participants were significantly less confident that crowdsourcing would be preferable to a small 
group discussion for percept questions than popularity questions (F(1, 234)=76.897, p < 0.0001); 
the interaction was not significant (F(2,234)=0.139, p=.87). Notably however, there was no 
difference between participants’ preference for asking a small group to discuss Easy Reasoning 
questions in Experiment 3 and Reasoning questions in Experiment 2, though it did approach 
significance (F(1, 234)=3.858, p < 0.0507).

A.1.4 mTurk Quality Screen
We present instructions as voice-over videos in order to prevent language bots from skimming 

the written text, and immediately after the videos, we simply present participants with 3 multiple 
choice questions about their task (A: is their job to answer the questions themselves or decide which 
answer will help Jack more, B: do the people who answer alone talk together before each telling Jack their 
answer or not talk together, C: do the people who talk together each tell Jack their own answer after talking, 
or do they have to agree on a single answer to tell Jack after talking), with the correct answer being a 
nearly verbatim transcript from the video. Participants who get 1 or more of the attention check 
questions wrong have one more opportunity to answer after watching the video again; if they get 
any questions wrong in the second round, they’re blocked from taking the survey. 

A.1.5 Supplemental Plot for Exps 1-3
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A.1.6 Mixed Effects Models 
Our preregistered analysis plan was to compute an average score from the four questions of each 
QuestionType and conduct a repeated measure ANOVA on these two average scores. However, 
we also report mixed effects models; by including the un-averaged ratings for each question (i.e., 
the ratings on the 4-point scale for each of the four questions of each question type), these account 
for variance in the questions themselves. For each experiment, we tested the model (Ct_Rating ~ 
0+AgeGroup*QuestionType + (1|subID), which models the responses for each of the 8 questions 
while treating AgeGroup and QuestionType as fixed effects, and allowing random intercepts for 
each subject. Centering individual ratings on 2.5 and deleting the intercept compares simple 
effect estimates to “chance” (i.e., 2.5 on a scale of 1 to 4) for each age group and estimates of 
interactions to the prior level’s interaction, testing our predictions versus chance for the reference 
level of QuestionType and versus the magnitude of the previous age group’s interaction for each 
interaction term; we report models with both Reasoning and Non-Reasoning questions coded as 
the reference level. These MEMs of raw ratings for each question produced qualitatively identical 
results to the repeated measures ANOVA on the averaged question ratings, with one exception: in 
Experiment 3, the mixed effect model suggested that while the youngest children favored group 
discussion for Non-Reasoning questions as well as Reasoning questions (consistent with the 
ANOVA), they also distinguished between the two (contrary to the ANOVA, where the difference 

By-question boxplots for each of the 4 Reasoning questions (Blues) and 4 Non-Reasoning 
questions (Popularity - Greens; Percept - Yellows) in each experiment. Grey labels are means. 
(For preregistered analyses, average scores were computed for each QuestionType).
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was not significant), favoring discussion for Reasoning question more than for Non-Reasoning 
questions

(A) Exp 1:  All age groups favored group discussion for Reasoning questions (βYounger  = .6125, 
SE = .086, p = 9.33e-12; βOlder = .69375, SE = .086, p = 2.15e-14; βAdult = .950, SE = .086, p < 2e-16), as 
well as making increasingly stronger distinctions between Reasoning and Non-Reasoning 
questions with age (βYounger  = -.64375, SE = .10774, p = 3.40e-09; βOlder  = -.60625, SE = .15236, p = 
7.52e-05; βAdult = .950, SE = .15236, p < 2.60e-10). Rerunning the regression with Non-Reasoning as 
the reference level showed that while younger children did not favor crowdsourcing for Non-
Reasoning questions, older children and adults did (βYounger = -.03125, SE = .086, p = 0.717; βOlder = 
-.55625, SE = .086, p = 4.62e-10; βAdult = -.66875, SE = .086, p < 1.47e-13)

(B) Exp 2:  As in Exp 1, all age groups favored group discussion for Reasoning questions 
(βYounger = .78125, SE = .086, p < 2e-16; βOlder = .78125, SE = .086, z p < 2e-16; βAdult = .65, SE = .086, p 
= 9.77e-13), as well as making increasingly stronger distinctions between Reasoning and Non-
Reasoning questions with age (βYounger = -1.23125, SE = .092, p < 2e-16; βOlder = -.48125, SE = .130, p 
= 0.000232; βAdult = -.63750, SE = .130, p =1.16e-06). Rerunning the regression with Non-Reasoning 
as the reference level showed that all age groups favored crowdsourcing for Non-Reasoning 
questions (βYounger  = -.450, SE = .086, p = 3.73e-07; βOlder  = -.93125, SE = .086, p < 2e-160; βAdult  = 
-.1.21875, SE = .086, p < 2e-16).

(C) Exp 3:  All age groups favored group discussion for Reasoning questions (βYounger  = .58125, 
SE = .096, p = 5.64e-09; βOlder  = .71875, SE = .096, p = 1.45e-12; βAdult  = .45625, SE = .096, p = 
3.56e-06), as well as making increasingly stronger distinctions between Reasoning and Non-
Reasoning questions with age (βYounger = -.28125, SE = .106, p =0.008342; βOlder = -.500, SE = .150, p 
= 0.000926; βAdult  = -.575, SE = .150, p = 0.000142). Rerunning the regression with Non-Reasoning 
as the reference level showed that while younger children preferred to discuss Non-Reasoning 
questions as well, older children had no preference, and adults preferred crowdsourcing Non-
Reasoning questions (βYounger  = .300, SE = .096, p = 0.002019; βOlder  = -.06250, SE = .096, p = 
0.516040; βAdult = -.400, SE = .096, p = 4.4e-05). 

More complex random effects specification were overfit or failed to converge, but suggested 
little variance between questions themselves after accounting for the effect of QuestionType. For 
instance, Model 1 (below) allows for random intercepts of questions within the fixed effect of 
QuestionType, but fit was singular. Inspecting random effects suggested that the (1|
QuestionType:Question) explained no variance.

Model 1: Ct_Rating ~ 0+QuestionType*AgeGroup+(1|subID)+(1|QuestionType:Question)
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A.2 Supplement to Chapter 3
A.2.1 Supplement Experiment 2: Methods & Results for Competence 
Judgments

Method. Past work has suggested that children think that “fast = smart” (Heyman & Compton, 
2006); accordingly, younger children in particular could reason that “faster agents are smarter, 
and smarter agents are better at solving puzzles, so a faster response is more likely to be 
accurate”. However, Heyman & Compton (2006) verbally described agents’ response time and 
task difficulty to children, leaving children no opportunity to decide how fast was too fast. When 
allowed to evaluate time and difficulty for themselves, children might show more skepticism. 
Thus, in order to compare our results to past work, we asked children to make a competence 
judgment at the end of the experiment. Children were shown two new figures and told that these 
agents would “each start their engines when they think they’ve figured out the shortest road that 
follows the rules”. One agent started his engine at 3s, and the other at 20s. However, unlike in 
main task, we then told the children that both agents had answered correctly. Children were then 
asked which of the two agents was “better at this game”. If children have the “fast = better” bias 
observed in prior studies, then of two agents who both accurately solve a problem, children 
should believe that the faster agent is more competent.

Results. For the Ability question , younger children and adults did not differ from chance 
when asked whether the fast or slow agent was “better” at the game, but older children were 
more likely to choose the faster agent (Supplemental Fig. 1: MYounger=53.3%, binomial p=ns, 
MOlder=71.1%, binomial  p=.007, binomial MAdult=60.0%, p = ns). Past research using vignettes 
about agents solving puzzles has suggested that while children have a “faster=better” bias, 
children under 7 also confound effort, ability, and outcome, while older children begin to 
attribute outcomes to some combination of effort and ability (Heyman & Compton, 2006; 
Nicholls, 1978; Stipek & Iver, 1989). Children’s judgments in the second task were consistent with 
that developmental trajectory: when told that the outcome was the same for the fast and slow 
agent, the 5-7 year olds considered them equally competent, while older children appeared to 
infer that the difference in speed nevertheless implied a difference in competence. However, 
adults did not consider the faster agent more competent in the Ability task. Adults may have 
been rightly been skeptical of the fast agent’s competence advantage. Puzzles as complex as the 
ones we used could only be “solved” in three seconds by a lucky guess. 

A.2.2 Supplement Experiment 2: Comparing responses on the 1st and 2nd task
If an agent’s response speed triggers a joint inference about their competence, this could offer a 

competing account of children’s accuracy judgments in the main task of Experiment 2. 
Comparing children’s competence judgments in the 2nd task with their accuracy judgments in 
the first task offer could some evidence for or against this account. If participants thought that the 
slow agent in the main task was less competent than the fast agent, there are three patterns we 
might expect to observe in the data. First, they might expect the fast agent to be more accurate 
than the slow agent; however, our primary results directly contradict that prediction — indeed, 
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the reverse is true. Second, participants who judged the fast agent as more competent than the 
slow agent in the 2nd task may also have expected the slow agent’s solution to be less accurate 
(in an absolute sense)  in the main task. However, we found no association between participants’ 
average accuracy predictions for the slow agent in the first task and their relative competence 
judgments in the second task, for any age group or the sample as a whole (Models 1a-1c in Table 
1 below). Third, we might expect an association between the difference in average accuracy 
predictions for the fast and slow agents on the first task and children’s competence judgments on 
the 2nd task. However, we again found no association here for any age group or the sample as a 
whole (Models 2a-2c in Table 2 below).

A.2.3 Supplement Experiment 3: Change to Materials
Materials. We made two changes to the materials in Experiment 3. In addition to generating a 

set of Easy maps, we used live videos of agents drawing one of two cards from a stack (instead of 
having a single map appearing on a screen before an animated 2D silhouette), looking at it, and 
ringing a bell to signal completion after either 3s or 20s. This was done in order to clarify what 
the agent had visual access to and when, while simultaneously showing children the two possible 
maps on the powerpoint slide in which the video was embedded. Each map appeared on either a 
blue or green background, so that children could answer by simply saying a color. All materials, 
along with information about the videos and counterbalancing, can be found on the OSF 
repository.

Table 1 Table 2
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A.2.4 Supplement Experiment 3: Results for Second Task (“Which Map”, when 
difficulty equalized)

In a second task at the end of the experiment, participants saw two additional trials, in which 
an agent drew a card with one of two Easy puzzles or one of two Hard puzzles and claimed to 
have solved the puzzle after 3s. Participants were then asked which map the agent had been 
looking at. Deprived of task difficulty as a cue, participants were no more likely to infer that the 
agent had drawn one than the other (Age6: MEasy=46.9%, p=0.860., MHard=53.1%, p=0.860; Age7: 
MEasy= 59.4%, p=0.377, MHard=46.9%, p=0.860; Age8: MEasy= 46.9%, p=0.860, MHard= 56.2%, 
p=0.597; Adults: MEasy= 32.3%, p=0.071, MHard= 50.0%, p=1.00).

A.2.5 Supplemental Analysis: Ordinal Regressions
The response variable for the main task in all three experiments was a 1-4 ordinal rating scale. 

Though we preregistered analyses based on standard regression techniques, which treat ordinal 
scales as metric data, some recent publications strongly recommend that ordinal data never be 
treated as metric due to the increased risk of both Type I and Type II errors (Liddell & Kruschke, 
2018) compared to alternative analyses. Thus, we also also include an alternative analysis below 
which uses cumulative ordinal regressions with logit link functions. Instead of assuming that the 
distance between each level of the response to an ordinal scale (e.g., “definitely accurate” vs. 
“probably accurate”) is equal, ordinal models assume that responses are mapped on to the 
ordered set of scale categories from an underlying continuous distribution, and search for the 
latent thresholds that “cut” the continuous distribution into response categories. Intuitively, a 
ordinal regression can be thought of a set of logistic regressions moving in order from one cut 
threshold to the next. Thus, in addition to producing the odds ratios for each coefficient in the 
model, an ordinal regression produces  k-1 thresholds, where k is the number of categories in the 
ordinal (e.g., Likert) scale. Importantly, while the standard coefficients reflect change across 
levels, the threshold cuts are the same for all levels of all variables. However, just as in logistic 
regression models, the thresholds and standard coefficients can be exponentiated to produce 
predicted probabilities. 

We used the clmm function from the ordinal package in R, which has similar random effects 
syntax to the lme4 package. We conducted two kinds of ordinal regression for each Experiment, 
including by-participant random intercepts in each. Model 1 looks for between condition 
differences; when Model 2  is run on each Age and RTSpeed separately, exponentiating the 
threshold cut between levels 2 and 3 of the 4-point Likert scale compares ratings to chance. 

(Model 1):  clmm(as.ordered(Ratings) ~ RTSpeed*AgeGroup + (1|subID), 
 data=.,  link="logit") 
(Model 2):  clmm(as.ordered(Ratings) ~ 1 + (1|subID), 
 data=., link=“logit")

Exp 1: Results of Ordinal Regression. The results of the ordinal regression were similar to 
those of the ANOVA. Model 1 suggested that the age groups as a whole were more likely to infer 
that slow responders were figuring the maps out for first time than fast responders (Log-
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ORSpeedSlow=1.16, SE = .23, z = 5.01, p=.001). Moreover, both older children and adults were more 
likely than younger children to infer that the fast responders were remembering  than figuring 
out (Log-ORAgeOlder=-0.55, SE = .23, z = -2.39, p=.017; Log-ORAgeAdult=-1.20, SE = .24, z = -4.99, 
p=.001), with the difference between fast and slow agents also increasing across AgeGroups (Log-
OROlder*Slow = 1.35, SE = .32, z = 4.20, p=.001; Log-ORAdult*Slow = 2.52, SE = .34, z = 7.51, p=.001). 
Exponentiating the 2|3 threshold coefficient from Model 2 produced similar results, suggesting 
that all age groups also inferred that Fast responders were more likely to be remembering 
answers than figuring out: the model predicts that 65.7% of younger children (z = 2.82, 95CI: 54.9
—75.0), 83.2% of older children (z = 5.33, 95CI: 73.3—89.9), and 95.5% of adults (z = 5.92, 95CI: 
88.5—98.3) would  give a rating of 2 or less on the 4-point scale. The reverse was true for Slow 
responders: the model predicts that 67.3% of younger children (z = -3.58, 95CI: 58.1–75.3), 84.3% 
of older children (z = -4.84, 95CI: 73.1—91.39), and 90.9% of adults (z = -5.80, 95CI: 82.1—95.6) 
would  give a rating of 3 or more on the 4-point scale. Thus, the only difference between the 
ANOVA and ordinal regression was the inclusion of coefficients estimating the strength of the 
developmental shift across age groups.

Exp 2: Results of Ordinal Regression. The results of the ordinal regression were similar to 
those of the ANOVA. Model 1 suggested that all age groups were more likely to infer that slow 
responders were accurate than inaccurate (Log-ORSpeedSlow=0.53, SE = .23, z = 2.25, p=.024). 
Additionally, adults were more likely than younger children to infer that the fast responders were 
inaccurate than accurate, though older children did not differ from younger children (Log-
ORAgeOlder=-0.55, SE = .23, z = -2.39, p=.017; Log-ORAgeAdult=-1.20, SE = .24, z = -4.99, p=.001); 
similarly, while the difference between inferences for fast and slow ages was significantly greater 
for adults than younger children, the difference was no greater in older children than younger 
children (Log-OROlder*Slow = 1.35, SE = .32, z = 4.20, p=.001; Log-ORAdult*Slow = 2.52, SE = .34, z = 
7.51, p=.001). Exponentiating the 2|3 threshold coefficient from Model 2 suggested that all age 
groups also inferred that Fast responders were more likely be inaccurate than accurate: Model 2 
predicts that 62.2% of younger children (z = 2.81, 95CI: 54.9—70.0), 64.3% of older children (z = 
2.98, 95CI: 55.0—72.6), and 86.9% of adults (z = 6.39, 95CI: 78.8—92.2) would  give a rating of 2 or 
less on the 4-point scale. However, while Model 2 predicts that 74.3% of adults  (z = 2.89, 95CI: 
58.4—8.56) inferred that Slow responders were more likely accurate than inaccurate, the 
difference for younger children was not significant (48.1%, z = 0.43, 95CI: 39.4—56.9). For older 
children, the model including random intercepts by-participant was singular; when the by-
participant intercepts were removed, the model suggested that 70.9% of responses from older 
children rated Slow responders as more likely accurate than inaccurate, a significant difference (z 
= 1.97, p = .0489). Thus, as in Experiment 1, the only difference between the ANOVA and ordinal 
regression was the inclusion of coefficients estimating the strength of the developmental shift 
across age groups. 
Exp 3: Results of Ordinal Regression. The results of the ordinal regression were similar to those 
of the ANOVA. We first asked whether the child sample would be more likely to infer that fast 
responses were easy maps than hard maps, using a model with random intercepts by participant, 
and age (centered on the mean of the child sample (7)) as a fixed effect. The effect of Ct_Age was 
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significant (Log-ORCt_Age=-0.48, SE = .24, z = -2.05, p=.041). Exponentiating the 2|3 threshold 
coefficient of Model 2 suggested that 82.9% of 6-year-olds (z = 2.88, 95CI: 62.4—93.4), 78.3% of 7-
year-olds (z = 3.25, 95CI: 62.4—88.6), and 91.8% of 8-year-olds (z = 97.0, 95CI: 79.5—97.0) would 
infer the fast agents to be solving easy maps rather than hard maps. Similarly, when both Ct_Age 
and RTSpeed were included as fixed effects, participants inferred that fast agents were more 
likely than slow agents to be solving easy maps (Log-ORSpeedSlow=1.27, SE = .20, z = 6.23, p <.001), 
with a significant effect of age and a marginal interaction (Log-ORCt_Age=-0.40, SE = .19, z = -2.05, 
p=.04; Log-ORAge*Speed=0.47, SE = .24, z = 1.96, p=.05). While neither the age effect nor the 
interaction reached significance in the analogous ANOVA presented in the main paper, these 
effects do not change the results: running a separate model of RTSpeed for each age as well as 
adults and exponentiating the 2|3 threshold coefficient to produce odds ratios suggested that the 
difference between fast and slow trials was significant for all age groups (ORSlowAge6= 2.26, SE = 
.33, z = 2.45, p = .014; ORSlowAge7 = 3.24, SE = .35, z = 3.38, p < .001; ORSlowAge8 = 6.54, SE = .40, z = 
4.75, p < .001;  ORSlowAdult = 12.10, SE = 1.77, z = 4.86, p < .001). In the second task of Experiment 3, 
participants saw two trials in which an agent quickly responded to one of two hard maps or one 
of two easy maps and participants were asked to rate their accuracy on a 4-point scale after 
inferring which map was the agent’s target (with no difference in the difficulty of the two maps, 
participants were equally likely to infer either as the agents’ target; see main text). The fit of a 
model including random intercepts by-participant was singular, so we removed them; in the 
reduced model, a significant effect of difficulty level suggested that participants were more likely 
to infer that the agent’s solution was accurate for the easy map than the hard map (Log-
ORItem_Hard = -1.28, SE = .49, z = -2.64, p=.008), with the inferred accuracy of the easy map 
increasing with age (Log-ORAge7 = 1.10, SE = .47, z = 2.35, p=.019; Log-ORAge8 = 1.01, SE = .48, z = 
2.10, p=.036; Log-ORAdult = 2.30, SE = .51, z = 4.51, p < .001). There was a significant interaction of 
age and difficulty for adults, but not for any other age group (Log-ORAdult*Item_Hard = -1.46, SE = 
.68, z = -2.12, p=.034). Running a separate model for the easy and hard maps for each age and 
exponentiating the 2|3 threshold coefficient to produce odds ratios suggested that, as with the 
ANOVA analysis in the main paper, absolute estimations of accuracy were less clear. Children 
ages 6 and 8, but not adults or 7-year-olds, believed that the agent’s solution was inaccurate for 
the Hard puzzle (Log-ORAge6 = 3.00, SE = .41, z = 2.69, p = .007; Log-ORAge7 = 1.91, SE = .37, z = 
1.74, p = .082; Log-ORAge8 = 5.40, SE = .49, z = 3.46, p < .001; Log-ORAdult = 1.58, SE = .37, z = 1.25, p 
= .213), while children ages 7 and 8, but not age 6, believed that the agent’s solution was accurate 
for the Easy puzzle (Log-ORAge6 = 0.88, SE = .35, z = -0.35, p = .724; Log-ORAge7 = 0.28, SE = .43, z = 
-2.98, p = .003; Log-ORAge8 = 0.39, SE = .39, z = -2.39, p = .017). Similarly, no adult rated accuracy 
on the Easy maps as less than 3 (“probably accurate”) on the 4-point scale; this high confidence in 
accuracy on the Easy map prevented the cumulative link model from estimate a 2|3 threshold. In 
sum, as in Experiments 1 and 2, the only difference between the ANOVA and ordinal regression 
was the inclusion of coefficients estimating the strength of the developmental shift across age 
groups.
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